EGU25-3297, updated on 14 Mar 2025
https://doi.org/10.5194/egusphere-egu25-3297
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Oral | Monday, 28 Apr, 17:25–17:35 (CEST)
 
Room 2.95
Intense CO2 consumption by pulsed volcano weathering near interglacial peaks in the Azores Archipelago (North Atlantic Region)
Francisco Hevia-Cruz1,2, Anthony Hildenbrand1, Nathan Sheldon3, François Chabaux4, Fernando O. Marques5, and Julie Carlut6
Francisco Hevia-Cruz et al.
  • 1Université Paris-Saclay, CNRS, GEOPS, Orsay, France (francisco.hevia.cruz@gmail.com)
  • 2Laboratoire de Sciences du Climat et de l’Environnement, CNRS, IPSL and Sorbonne Université, Gif-sur-Yvette, France
  • 3Department of Earth and Environmental Sciences, University of Michigan, USA
  • 4Université de Strasbourg, CNRS, ITES, Strasbourg, France
  • 5Retired, no affiliation
  • 6Université Paris Cité, CNRS, IPGP, Paris, France

The weathering of basaltic rocks, especially on volcanic islands, plays a crucial role in global carbon cycling. In these environments, intense precipitation and frequent exposure of fresh rocks accelerate weathering processes, thus favoring the uptake of atmospheric CO2. While most estimates of weathering rates derive from river chemistry, soils and paleosols –the solid residue of protracted interaction between surface waters and the volcanic substrate– remain underexplored. Developed in contact with the atmosphere and incorporated into the geological record once sealed by volcanic deposits, paleosols record valuable environmental information, including the paleoclimatic conditions under which they were formed. In this study, we investigated the geochemistry of paleosols developed in the Azores Archipelago over the past 1 Myr. Precise geochronology of volcanic units bracketing paleosols revealed pulses of fast soil formation during interglacial peaks, and indicates high soil formation rates (3–180 mm kyr-1), similar to modern soil formation rates in tropical volcanic islands. This suggests periods over which the Azores High-pressure system could have been weakened or centered farther to the south of its current position, allowing humid air masses to reach the Azores region. Geochronological evidence suggests high initial formation rates, rapidly decreasing to near zero after ~35 kyr. This might be attributed to a combination of cation depletion and precipitation of stable minerals. Paleosols have generally developed faster on pyroclastic deposits than on lava flows. However, those formed on lava flows required less vertical development to sustain high cation exports due to their higher density. Based on the geochemistry of paleosols and their parental materials, we estimated cation exports (0–2600 t km-2 yr-1) and associated CO2 uptake (0–35 × 106 Mol km-2 yr-1). These estimates generally exceed previous estimates based on the geochemistry of modern rivers in the Eastern Azores, by a factor of up to tenfold. Our results highlight the criticality of precise geochronological control to estimate past weathering and soil formation rates, and that atmospheric CO2 may have experienced short episodes of intense sequestration during interglacial stages, possibly contributing to subsequent cooling events over the past 1 Myr. A preliminary study of U-series geochronology on paleosols of the Azores provided promising results, consistent with our previous Ar geochronology. This is expected to provide a better understanding of the evolution of past weathering rates and consequent CO2 consumption in the Azores and other volcanic settings.

How to cite: Hevia-Cruz, F., Hildenbrand, A., Sheldon, N., Chabaux, F., Marques, F. O., and Carlut, J.: Intense CO2 consumption by pulsed volcano weathering near interglacial peaks in the Azores Archipelago (North Atlantic Region), EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-3297, https://doi.org/10.5194/egusphere-egu25-3297, 2025.