EGU25-3874, updated on 14 Mar 2025
https://doi.org/10.5194/egusphere-egu25-3874
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Poster | Thursday, 01 May, 14:00–15:45 (CEST), Display time Thursday, 01 May, 08:30–18:00
 
vPoster spot 1, vP1.2
Petrographic and Geochemical Characterization of Mayedo and Kinzoki Ranges (Sumbi Bauxite Region, Kongo Central/DR Congo)
Esperit Mwanakangu1 and Derick Ungu2
Esperit Mwanakangu and Derick Ungu
  • 1Kolwezi, Congo, the Democratic Republic of the (hopesperit@gmail.com)
  • 2Université de Kinshasa

The bauxitic region of Sumbi and its surroundings in Kongo Central (DR Congo) is located in an area corresponding to “bands” of basic rocks made up of microdolerites, basalts and andesites. The problem of this study is linked to the similarity of the phenomena that generated the depositional process of these ferruginous and aluminous formations. The aim of this article is to carry out a chemical and petrographic study of samples of bauxitic materials from the Mayedo and Kinzoki regions, with a view to their possible recovery. To this end, the chemical and petrographic analysis of the weathering formations outcropping in the study area was carried out using X-ray fluorescence and thin section methods. The latter revealed that two lithologies were detected in the healthy rocks: basalts with a mineralogical assemblage of plagioclase crystals, pyroxene microcrystals and oxide opaques; and dolerites represented by plagioclase crystals, pyroxenes and a few quartz crystals. X-ray fluorescence revealed high levels of Al2O3 (32.69%) in the Mayedo zone (MHb1). This visibly gibbsite-rich level corresponds to the zone of friable, homogeneous bauxite with a massive, blood-red texture, with an estimated gibbsite percentage of 55.50. The percentage of Fe2O3 is high in these zones at 42.77%, hence the dark red colour, reflecting a strong zone of ferruginasation. This horizon contains a high concentration of hematite and goethite minerals. Highly variable SiO2 contents ranging from 13.48% to 40.82%. These variations are essentially due to the dissolution of silica by leaching and resilification.

How to cite: Mwanakangu, E. and Ungu, D.: Petrographic and Geochemical Characterization of Mayedo and Kinzoki Ranges (Sumbi Bauxite Region, Kongo Central/DR Congo), EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-3874, https://doi.org/10.5194/egusphere-egu25-3874, 2025.