- 1Japan Atomic Energy Agency, Kashiwa, Japan (sakuma.kazuyuki@jaea.go.jp)
- 2Massachusetts Institute of Technology, Cambridge, USA
- 3Lawrence Berkeley National Laboratory, Berkeley, USA
- 4Florida International University, Miami, USA
Soil and groundwater contamination at some sites impacts downstream populations when contaminants migrate from groundwater to rivers. Predictive modeling is challenging since it is required to include detailed subsurface structure and groundwater flow models within the site, as well as watershed-scale models for large-scale transport. Now that climate change impacts are major concerns at many sites, it is important to have the capability to represent the water balance change and its impact on contaminant transport both at the site and watershed scale in a consistent manner. This study introduces a new simulation framework to couple a detailed 2D site/hillslope-scale groundwater model to the 3D watershed-scale model to describe contaminant transport from groundwater to river water within the catchment. Within the site, we estimate the contaminant discharges to the river from contaminant sources based on the Richards equation and advection-dispersion equation. The discharges are then applied as the boundary conditions to the watershed-scale model considering the width of the 2D site/hillslope-scale groundwater model and recharge rates for both models.
We demonstrate and validate our framework based on the tritium concentration datasets in surface water and groundwater collected at the Savannah River Site F-Area. Results show that the method can successfully reproduce the contaminant concentration time series in river water.
How to cite: Sakuma, K., Wainwright, H., Xu, Z., Lawrence, A., and Hazenberg, P.: Multiscale model coupling for watershed-scale contaminant transport modeling from point sources in Savannah River Site, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-4077, https://doi.org/10.5194/egusphere-egu25-4077, 2025.