- 1National and Kapodistrian University of Athens, Physics, Greece (evangchr@phys.uoa.gr)
- 2University of Calgary, Alberta, Canada
- 3Institute of Accelerating Systems & Applications
Motivated by the need for more accurate radiation environment modelling, this study focuses on identifying and analyzing the drivers behind the sub-relativistic electron flux variations in the inner magnetosphere. We utilize electron flux data between 1 and 500 keV from the Hope and MagEIS instruments on board the RBSP satellites, as well as from the FEEPS instruments on board the MMS spacecrafts, along with solar wind parameters and geomagnetic indices obtained from the OmniWeb2 and SuperMag data services. We calculate the correlation coefficients between these parameters and electron flux. Our analysis shows that substorm activity is a crucial driver of the source electron population (10 - 100 keV), while also showing that seed electrons (100 - 400 keV) are not purely driven by substorm events, but also from enhanced convection/inward diffusion. By introducing time lags, we observed a delayed response of electron flux to changes in geospace conditions, and we identified specific time lag periods where the correlation is maximum. This work contributes to our broader understanding of the outer belt sub-relativistic electron dynamics, and forms the basis for future research.
How to cite: Christodoulou, E., Katsavrias, C., Kordakis, P., and Daglis, I.: Influence of solar wind driving and geomagnetic activity on the variability of sub-relativistic electrons in the inner magnetosphere, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-4720, https://doi.org/10.5194/egusphere-egu25-4720, 2025.