EGU25-5780, updated on 14 Mar 2025
https://doi.org/10.5194/egusphere-egu25-5780
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Poster | Wednesday, 30 Apr, 10:45–12:30 (CEST), Display time Wednesday, 30 Apr, 08:30–12:30
 
Hall X3, X3.68
ClimaMeter: a rapid attribution framework for weather extreme events
Davide Faranda1 and the The ClimaMeter team*
Davide Faranda and the The ClimaMeter team
  • 1CNRS-CEA-LSCE-IPSL, Laboratoire de Science du Climat e de l'Environnement, Gif sur Yvette, France
  • *A full list of authors appears at the end of the abstract
Climate change is a global challenge with manifold and widespread consequences, including the intensification and increased frequency of numerous extreme weather phenomena. In response to this pressing issue, we introduce ClimaMeter, a platform designed to assess and contextualize extreme weather phenomena in relation to climate change. The platform provides near-real-time information on the dynamics of extreme events, serving as a resource for researchers, policymakers, and acting as a scientific outreach tool for the general public. ClimaMeter currently analyzes heatwaves, cold spells, heavy precipitation, and windstorms.Our methodology is based on looking for weather conditions similar to those that caused the extreme event of interest with physics-informed machine-learning methodologies. We focus on the satellite era, namely the period since 1979, when widespread observations of climate variables from satellites have become available. The object studied (i.e. "the event") is asurface-pressure pattern over a certain region and averaged over a certain number of days, that has lead to a extreme weather conditions. We split the dataset 1979-Present in two parts of equal length and consider the first half of the satellite era  as "past" and the second part as "present" separately. We use data from MSWX. We then compare how the selected weather conditions have changed between the two periods, and whether such changes are likely due to natural climate variability or anthropogenic climate change.
This presentation sheds light on the methodology, data sources, and analytical techniques that ClimaMeter relies on, offering a comprehensive overview of its scientific foundations. To illustrate ClimaMeter, we present some examples of recent extreme weather events. Additionally, we highlight the role of ClimaMeter in promoting a profound understanding of the complex interactions between climate change and extreme weather phenomena, with the hope of ultimately contributing to informed decision-making and climate resilience. Follow us on the social-media @ClimaMeter and visit www.climameter.org.
The ClimaMeter team:

for the updated list of members, please visit: www.climameter.org

How to cite: Faranda, D. and the The ClimaMeter team: ClimaMeter: a rapid attribution framework for weather extreme events, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-5780, https://doi.org/10.5194/egusphere-egu25-5780, 2025.