EGU25-7536, updated on 14 Mar 2025
https://doi.org/10.5194/egusphere-egu25-7536
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Poster | Tuesday, 29 Apr, 14:00–15:45 (CEST), Display time Tuesday, 29 Apr, 08:30–18:00
 
vPoster spot 1, vP1.18
Water-fluxed melting and back-arc extension in the continental arc: Evidence from I-type granites, adakitic rocks and high-Nb mafic rocks at the western margin of the Yangtze Block, South China
Bin Huang1, Wei Wang1, JunHong Zhao1, Nimat Ullah Khattak2, Rui Li1, Si-Fang Huang3, Gui-Mei Lu1, Li Sun1, Er-Kun Xue1, Yang Zhang1, and Xin-Yu Cai1
Bin Huang et al.
  • 1China University of Geosciences, Wuhan, State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, Wuhan, China (1201910024@cug.edu.cn)
  • 2National Centre of Excellence in Geology, University of Peshawar, Pakistan
  • 3Department of Surveying and Planning, Shangqiu Normal University, Shangqiu 476000, China

The Neoproterozoic western margin of the Yangtze Block in South China records significant continental crust-forming and modification processes through two distinct magmatic episodes. Using integrated geochemical and petrological approaches, we demonstrate that the 811-802 Ma Yuanmou Complex comprises alkaline high-Nb mafic rocks characterized by high Nb (15.7-41.9 ppm), TiO2 (2.13-3.39 wt%) contents and positive εNd(t) (+4.8 to +6.9), coupled with adakitic granodiorites showing high Sr/Y (17.4-49.0), (La/Yb)N (16.3-52.6) and consistent bulk rock εNd(t) (-0.5 to -1.5) and zircon εHf(t) (0.0 to +2.3). The younger 750 Ma Jinping I-type granites exhibit high SiO2 (71.2-73.5 wt%) and alkalis contents, enriched LREE patterns and depleted isotopic signatures (εNd(t): -0.4 to +1.3; zircon εHf(t): +4.83 to +8.37). Thermodynamic modeling reveals how crustal water content-controlled magma generation at different depths - low water-fluxed melting (2.0-3.5 wt% H2O) produced I-type granites at medium pressure (6-9 kbar), while deeper settings with higher water content generated adakitic melts. The high-Nb mafic rocks in the Yuanmou Complex, derived from metasomatized mantle wedge, provide evidence for crustal-mantle interaction during back-arc extension. These coupled magmatic processes demonstrate how water content variations with depth influenced continental crust formation and evolution in arc settings.

How to cite: Huang, B., Wang, W., Zhao, J., Khattak, N. U., Li, R., Huang, S.-F., Lu, G.-M., Sun, L., Xue, E.-K., Zhang, Y., and Cai, X.-Y.: Water-fluxed melting and back-arc extension in the continental arc: Evidence from I-type granites, adakitic rocks and high-Nb mafic rocks at the western margin of the Yangtze Block, South China, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-7536, https://doi.org/10.5194/egusphere-egu25-7536, 2025.