- 1University of Torino, Earth Sciences, Torino, Italy (daniele.giordano@unito.it)
- 2CNR-ISSMC, Institute of Science, Technology and Sustainability for the Development of Ceramic Materials, Faenza (Italy)
- 3CNR-IGG, Institute of Geosciences and Geo-resources, Pisa (Italy)
The viscosity of silicate melts is one of the most important physical parameter governing natural processes such as volcanic eruptions, as well as manufacturing processes in the ceramic and glass industries. The traditional techniques for measuring viscosity are commonly time- and energy-consuming, they require equilibrium conditions, and are mostly limited to reduced viscosity intervals. Reducing testing time is a critical target for both academic and productive purposes. In order to calibrate an efficient tool capable of both reducing testing time and expand the range of viscosity determination, we used the hot stage microscope (HSM) technique. Specimens (pressed powders) of natural samples, previously measured employing a combination of concentric cylinder and the micropenetration dilatometric techniques, were heated at a rate of 10°C/min until melting. Characteristic shapes (Start sintering, End sintering, Softening, Sphere, Hemisphere, and Melting) were observed at characteristic temperatures (CT); then their viscosities were calculated from their known viscosity-temperature (Vogel-Fulcher-Tammann, VFT) relationships. The observed shapes result from a combined effect of viscosity and surface tension, allowing viscosity values at each CT to linearly scale with surface tension. Viscosity was calibrated by introducing correction factors based on glass chemistry. This approach provides two independent data sets – CT (from HSM) and the corresponding characteristic viscosity (from glass composition) – which can be used to calculate the VFT parameters. The comparison between calculated and experimental viscosity shows good correspondence, which significantly improved previous attempts using only HSM data. These results also highlight the potential of this non-contact technique for evaluating the effects of crystalline particles and porosity on the rheological properties of alumosilicate melts.
Contribution of PNRR M4C2 - PRIN 2022PXHTXM - STONE project, funded from EU within the Next generation EU program. CUP: D53D23004840006
How to cite: Giordano, D., Molinari, C., Dondi, M., Conte, S., and Zanelli, C.: A Method for Measuring Viscosity of Silicate Melts Using Hot Stage Microscopy (HSM), EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-8768, https://doi.org/10.5194/egusphere-egu25-8768, 2025.