EGU25-9943, updated on 15 Mar 2025
https://doi.org/10.5194/egusphere-egu25-9943
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Poster | Monday, 28 Apr, 10:45–12:30 (CEST), Display time Monday, 28 Apr, 08:30–12:30
 
Hall X4, X4.32
ThORN - Experimental investigation of the relevance of thermo-osmotic flow in clay for radioactive waste disposal
Feliks Kiszkurno1,2, Fabien Magri3,4, Remi de la Vaissiere5, Jean Talandier6, Jean-Charles Robinet6, Carlos Plua5, Giles Armand6, Stephane Geboreau7, Arnaud Dizier8, Guillaume Flood-Page8, and Thomas Nagel1,2
Feliks Kiszkurno et al.
  • 1Technische Universität Bergakademie Freiberg, Institut für Geotechnik, Lehrstuhl für Bodenmechanik und Grundbau , Freiberg, Germany (feliks-kuba.kiszkurno@ufz.de)
  • 2Department of Environmental Informatics, Helmholtz Center for Environmental Research GmbH -- UFZ, Leipzig, Germany
  • 3Bundesamt für die Sicherheit der nuklearen Entsorgung (BASE), Berlin, Germany
  • 4Freie Universität Berlin, Hydrogeologie, Berlin, Germany
  • 5CMHM URL, 55290 Bure, France
  • 6Andra, Scientific and Technological Division, Bure/Châtenay-Malabry, France
  • 7BRGM - 3 avenue Claude-Guillemin - BP 36009 - 45060 Orléans Cedex 2 - France
  • 8EURIDICE, Belgian Nuclear Research Center, SCK CEN, Mol, Belgium

As part of the ThORN project [1], an in-situ experiment to quantify thermo-osmotic (TO) flow in Callovo-Oxfordian clays will be carried out at the Bure Underground Research Laboratory (URL) in Meuse/Haute-Marne, France.


While previous research on TO has been carried out on reconstructed samples, our in-situ experiment will be accompanied by the evaluation of well-controlled laboratory experiments on intact samples. The aim of this project is to quantitatively assess the importance and parameterisation of TO flow in clay under thermal gradients induced by the heat of nuclear decay. The design and evaluation of all experiments will be supported by numerical simulations in OpenGeoSys. The resulting models will be used to analyse near and far field effects in a repository environment.

 

This paper presents highlights of the preliminary design phase. Objectives, expectations and potential challenges are outlined and discussed. Predictive simulations of different designs and assumptions used in the design phase are presented and compared. We show how numerical simulations can be used to explore the potential results of physical experiments before they are built, and how this can optimise the workflow of the experiment.

References
[1] ThORN " Experimental investigations on thermo-osmotic flow in argillaceous materials relevant to deep geological repositories for radioactive waste " The Federal Office for the Safety of Nuclear Waste Management (BASE); Funds FKZ 4723F00104

How to cite: Kiszkurno, F., Magri, F., de la Vaissiere, R., Talandier, J., Robinet, J.-C., Plua, C., Armand, G., Geboreau, S., Dizier, A., Flood-Page, G., and Nagel, T.: ThORN - Experimental investigation of the relevance of thermo-osmotic flow in clay for radioactive waste disposal, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-9943, https://doi.org/10.5194/egusphere-egu25-9943, 2025.