The statistical characterization and modelling of precipitation are crucial in a variety of applications, such as flood forecasting, water resource assessments, evaluation of climate change impacts, infrastructure design, and hydrological modelling. This session aims to gather contributions on research, advanced applications, and future needs in the understanding and modelling of precipitation, including its variability at different scales and its sources of uncertainty.
Contributions focusing on one or more of the following issues are particularly welcome:
- Process conceptualization and approaches to modelling precipitation at different spatial and temporal scales, including model parameter identification, calibration and regionalisation, and sensitivity analyses to parameterization and scales of process representation.
- Novel studies aimed at the assessment and representation of different sources of uncertainty of precipitation, including natural climate variability and changes caused by global warming.
- Uncertainty and variability in spatially and temporally heterogeneous multi-source ground-based, remotely sensed, and model-derived precipitation products.
- Estimation of precipitation variability and uncertainty at ungauged sites.
- Modelling, forecasting and nowcasting approaches based on ensemble simulations for synthetic representation of precipitation variability and uncertainty.
- Scaling and scale invariance properties of precipitation fields in space and/or in time.
- Dynamical and statistical downscaling approaches to generate precipitation at fine spatial and temporal scales from coarse-scale information from meteorological and climate models.
Precipitation modelling: uncertainty, variability, and downscaling
Co-organized by AS1/NP2
Convener:
Alin Andrei Carsteanu
|
Co-conveners:
Giuseppe MascaroECSECS,
Chris Onof,
Roberto Deidda,
Nikolina BanECSECS