A range of low-carbon energy technologies incorporates reservoirs in the subsurface, whether as an energy resource (e.g., diverse types of geothermal energy) or as a storage medium (e.g., hydrogen storage, radioactive waste storage or CO2 sequestration). Due to the depth of these various georeservoirs, monitoring is typically conducted remotely and coupled with laboratory experiments and modeling to understand the complex thermo-hydro-mechanical-chemical (THMC) processes ongoing in the geo-reservoir. As the level of resolution and range of required measurements continues to grow, in recent decades we have seen a dramatic increase in new experimental facilities being constructed and methods developed to address these conditions and processes. Many of these facilities feature differing and unique components and have been developed to characterize geo-reservoir rocks and investigate the effects of the parameters that are critical to describing anthropogenic influence in the use of the underground (rapid evolution of fluid pressure, evolution of fluid chemistry, temperature variation, etc).
This session is set to address the state-of-the-art in laboratory experiments focused on studies on georeservoirs through geomechanics, geochemistry, petrophysics and materials science. We welcome contributions dealing with the development of novel apparatuses, newly developed sensors, or new experimental procedures to simulate geo-reservoir conditions and investigate rock and fluid properties at representative depths.
State-of-the-art in experimental characterization and processes in geo-reservoirs
Co-organized by ERE5