EMRP3.3 | Outstanding Short- and Long-term Features of the Geomagnetic Field at Local and Global Scales
EDI
Outstanding Short- and Long-term Features of the Geomagnetic Field at Local and Global Scales
Co-organized by GD8/SSP2
Convener: Kirolosse GirgisECSECS | Co-conveners: Evdokia Tema, Saioa A. Campuzano, Angelo De Santis, Filipe Terra-Nova

Examining historic and prehistoric variations in the geomagnetic field provides insights into processes occurring from the core-mantle boundary to the planet's core. Investigating the paleomagnetic field also enhances our ability to predict future changes, which in turn affects the climate and has implications for life on Earth and human technology. Over the past two hundred years, the Earth's magnetic field has exhibited a global decrease of about 10%. Moreover, regions with weakened magnetic fields, or magnetic anomalies, such as the South Atlantic Anomaly (SAA), have evolved, with a new minimum emerging near the South African coast. Indirect records from archaeological materials, volcanic rocks, sediments, and speleothems are essential for studying the ancient geomagnetic field, covering different time scales, from secular variation to magnetic reversals. In this session, we welcome abstracts that contribute to the advancement of our understanding of geomagnetic field variations in terms of time scale (short and long) and spatial scale (e.g., magnetic anomalies). Applications extend to the fields of geomagnetism, stratigraphy, volcanology, chronology, climate, geobiology, and geospace.

Examining historic and prehistoric variations in the geomagnetic field provides insights into processes occurring from the core-mantle boundary to the planet's core. Investigating the paleomagnetic field also enhances our ability to predict future changes, which in turn affects the climate and has implications for life on Earth and human technology. Over the past two hundred years, the Earth's magnetic field has exhibited a global decrease of about 10%. Moreover, regions with weakened magnetic fields, or magnetic anomalies, such as the South Atlantic Anomaly (SAA), have evolved, with a new minimum emerging near the South African coast. Indirect records from archaeological materials, volcanic rocks, sediments, and speleothems are essential for studying the ancient geomagnetic field, covering different time scales, from secular variation to magnetic reversals. In this session, we welcome abstracts that contribute to the advancement of our understanding of geomagnetic field variations in terms of time scale (short and long) and spatial scale (e.g., magnetic anomalies). Applications extend to the fields of geomagnetism, stratigraphy, volcanology, chronology, climate, geobiology, and geospace.