CL4.11 | Palaeoclimate modeling: From time-slices and sensitivity experiments to evaluating transient simulations for improved future projections
EDI
Palaeoclimate modeling: From time-slices and sensitivity experiments to evaluating transient simulations for improved future projections
Co-organized by NP5
Convener: Kira Rehfeld | Co-conveners: Julia Brugger, Isma Abdelkader Di Carlo, Matteo Willeit, Elisa Ziegler

Modelling past climate states, and the transient evolution of Earth’s climate remains challenging. Time periods such as the Paleocene, Eocene, Pliocene, the Last Interglacial, the Last Glacial Maximum or the mid-Holocene span across a vast range of climate conditions. At times, these lie far outside the bounds of the historical period that most models are designed and tuned to reproduce, providing valuable additional constraints on model sensitivities. However, our ability to predict future climate conditions and potential pathways to them is dependent on our models' abilities to simulate a realistic range of climate variability as it occurred in Earth’s history. Thus, our geologic past is ideally suited to test and evaluate models against data, so they may be better able to simulate the present and make more reliable future climate projections.

We invite contributions on palaeoclimate-specific model development, tuning, simulations, and model-data comparison studies. Simulations may be targeted to address specific questions or follow specified protocols (as in the Paleoclimate Modelling Intercomparison Project – PMIP or the Deep Time Model Intercomparison Project – DeepMIP). They may include or juxtapose time-slice equilibrium experiments and long transient climate simulations (e.g. transient simulations covering the entire last glacial cycle as per the goal of the PalMod project). Comparisons may include different time periods (e.g., deep time, Quaternary, historical as well as future simulations), and focus on comparison of mean states, spatial gradients, circulation or modes of variability using different models, or contrast model results with reconstructions of temperature, precipitation, vegetation or circulation tracers (e.g. δ18O, δD or Pa/Th).

Presentation and discussion of results from the latest phase of PMIP4-CMIP6, and early-stage tests of new models or simulations for PMIP5/CMIP7 are particularly encouraged. However, we also solicit comparisons across time periods, between models and data, and analyses of underlying mechanisms of change as well as contributions introducing novel model or experimental designs that allow to improve future projections.

Modelling past climate states, and the transient evolution of Earth’s climate remains challenging. Time periods such as the Paleocene, Eocene, Pliocene, the Last Interglacial, the Last Glacial Maximum or the mid-Holocene span across a vast range of climate conditions. At times, these lie far outside the bounds of the historical period that most models are designed and tuned to reproduce, providing valuable additional constraints on model sensitivities. However, our ability to predict future climate conditions and potential pathways to them is dependent on our models' abilities to simulate a realistic range of climate variability as it occurred in Earth’s history. Thus, our geologic past is ideally suited to test and evaluate models against data, so they may be better able to simulate the present and make more reliable future climate projections.

We invite contributions on palaeoclimate-specific model development, tuning, simulations, and model-data comparison studies. Simulations may be targeted to address specific questions or follow specified protocols (as in the Paleoclimate Modelling Intercomparison Project – PMIP or the Deep Time Model Intercomparison Project – DeepMIP). They may include or juxtapose time-slice equilibrium experiments and long transient climate simulations (e.g. transient simulations covering the entire last glacial cycle as per the goal of the PalMod project). Comparisons may include different time periods (e.g., deep time, Quaternary, historical as well as future simulations), and focus on comparison of mean states, spatial gradients, circulation or modes of variability using different models, or contrast model results with reconstructions of temperature, precipitation, vegetation or circulation tracers (e.g. δ18O, δD or Pa/Th).

Presentation and discussion of results from the latest phase of PMIP4-CMIP6, and early-stage tests of new models or simulations for PMIP5/CMIP7 are particularly encouraged. However, we also solicit comparisons across time periods, between models and data, and analyses of underlying mechanisms of change as well as contributions introducing novel model or experimental designs that allow to improve future projections.