HS2.4.5 | Forest Water Dynamics across Spatial and Temporal Scales
EDI
Forest Water Dynamics across Spatial and Temporal Scales
Convener: Luisa Hopp | Co-conveners: Rodolfo Nóbrega, Alicia Correa, Daniele Penna

Forests are primary regulators of water, energy, and carbon cycles. Maintaining forest functional integrity is fundamental to the sustainability of ecosystems, societies, and human development as described in the UN Sustainable Development Goals.
Global change and anthropogenic intervention are putting enormous pressure on forests, affecting the ecosystem services they provide through water quantity and quality, and biogeochemical cycles. The conventional wisdom that forest hydrology emphasizes the role of forests and forest management practices on runoff generation and water quality has expanded in light of rapid global change.
Improving our understanding of how forest-water interactions are shaped by physiographic, biogeochemical and hydrometeorological factors and how forested catchments respond to dynamic environmental conditions and disturbances, is critical for protecting and managing our forest ecosystems. Building this knowledge requires interdisciplinary approaches in combination with new monitoring methods and modeling efforts.
This session brings together studies that aim to improve our understanding of water-forest dynamics and stimulate discussion on the impact of global change on hydrological processes in forest ecosystems at different scales.
We invite field experimentalists and modelers working in forests from boreal to tropical regions to submit contributions that:
1) Improve our understanding of forest (eco)hydrological processes using an experimental or modeling approach or a combination of both;
2) Assess the hydrology-related impacts of land use/cover change and environmental disturbances on forested ecosystems;
3) Feature innovative methods and observational techniques, such as optical sensors, tracer-based experiments, monitoring networks, citizen science, and drones, that reveal new insights or data sources in forest hydrology;
4) Include interdisciplinary research that supports consideration of overlooked soil-plant-atmosphere components in hydrological studies.

Forests are primary regulators of water, energy, and carbon cycles. Maintaining forest functional integrity is fundamental to the sustainability of ecosystems, societies, and human development as described in the UN Sustainable Development Goals.
Global change and anthropogenic intervention are putting enormous pressure on forests, affecting the ecosystem services they provide through water quantity and quality, and biogeochemical cycles. The conventional wisdom that forest hydrology emphasizes the role of forests and forest management practices on runoff generation and water quality has expanded in light of rapid global change.
Improving our understanding of how forest-water interactions are shaped by physiographic, biogeochemical and hydrometeorological factors and how forested catchments respond to dynamic environmental conditions and disturbances, is critical for protecting and managing our forest ecosystems. Building this knowledge requires interdisciplinary approaches in combination with new monitoring methods and modeling efforts.
This session brings together studies that aim to improve our understanding of water-forest dynamics and stimulate discussion on the impact of global change on hydrological processes in forest ecosystems at different scales.
We invite field experimentalists and modelers working in forests from boreal to tropical regions to submit contributions that:
1) Improve our understanding of forest (eco)hydrological processes using an experimental or modeling approach or a combination of both;
2) Assess the hydrology-related impacts of land use/cover change and environmental disturbances on forested ecosystems;
3) Feature innovative methods and observational techniques, such as optical sensors, tracer-based experiments, monitoring networks, citizen science, and drones, that reveal new insights or data sources in forest hydrology;
4) Include interdisciplinary research that supports consideration of overlooked soil-plant-atmosphere components in hydrological studies.