HS10.2 | Forest Ecohydrology
EDI
Forest Ecohydrology
Convener: Stan Schymanski | Co-conveners: Richard Keim, Angelika Kübert, Arnaud Watlet

Forest ecosystems interact very strongly with hydrological processes, at various spatial and temporal scales. They have co-evoloved with soils and topography over a long period of time, and their potentially deep root systems enable cross-cutting exchange between the ground water, soil water, plants and the atmosphere. Our ability to detect these sometimes hidden interactions is limited, but new techniques, such as geochemical and isotopic tracers, various geophysical and remote sensing techniques provide ever new and often surprising perspectives into the complex interactions between forest ecoystems and the water cycle.
This session solicits contributions that share new insights about forest ecohydrological processes or demonstrate new ways of observing and modelling water fluxes in forest ecoystems, forest water stress, drought resistance and resilience, and the links between forest hydrological processes and the wider water, carbon and nutrient cycles.

Forest ecosystems interact very strongly with hydrological processes, at various spatial and temporal scales. They have co-evoloved with soils and topography over a long period of time, and their potentially deep root systems enable cross-cutting exchange between the ground water, soil water, plants and the atmosphere. Our ability to detect these sometimes hidden interactions is limited, but new techniques, such as geochemical and isotopic tracers, various geophysical and remote sensing techniques provide ever new and often surprising perspectives into the complex interactions between forest ecoystems and the water cycle.
This session solicits contributions that share new insights about forest ecohydrological processes or demonstrate new ways of observing and modelling water fluxes in forest ecoystems, forest water stress, drought resistance and resilience, and the links between forest hydrological processes and the wider water, carbon and nutrient cycles.