NH4.5 | Advances in Estimation and Understanding of Earthquake Site Effects
EDI
Advances in Estimation and Understanding of Earthquake Site Effects
Convener: Enrico Paolucci | Co-conveners: Giulia Sgattoni, Janneke van Ginkel, Francesco Panzera, Sebastiano D’Amico

The estimation of ground motion for future earthquakes is one of the main tasks of seismology. Among the processes affecting ground motion, local site conditions play a significant role. Earthquake site effects encompass several phenomena, such as amplified ground shaking due to local geological and topographical features, liquefaction events, ground failures, cavity collapses, and earthquake-triggered landslides. The estimation of these effects is a necessary step for seismic hazard and seismic risk mitigation as well as to build effective strategies for urban planning and emergency management.
This session aims to gather multidisciplinary contributions that bridge the fields of seismology geology, geotechnics, and engineering and will focus on the following topics:
- Site characterization and seismic microzonation;
- Empirical assessments of stratigraphic and topographic amplification effects;
- Quantitative evaluation of seismic site response in 1D, 2D, and 3D configuration;
- Earthquake-induced ground effects, such as landslides, liquefaction and cavity collapse;
- Soil-structure interaction and characterization of building response to seismic events;
- Proposals for integration and/or revision of building codes;
- Analysis of historical and cultural heritage sites.
The session also aims to collect results based on different geophysical techniques (e.g., earthquake data, ambient noise analysis, HVSR, array measurements, active surface wave prospecting, ERT, GPR, seismic refraction tomography, etc.) and their integration. Contributions regarding innovative methodologies as Distributed Acoustic Sensing (DAS) systems and dense arrays are well accepted.

The estimation of ground motion for future earthquakes is one of the main tasks of seismology. Among the processes affecting ground motion, local site conditions play a significant role. Earthquake site effects encompass several phenomena, such as amplified ground shaking due to local geological and topographical features, liquefaction events, ground failures, cavity collapses, and earthquake-triggered landslides. The estimation of these effects is a necessary step for seismic hazard and seismic risk mitigation as well as to build effective strategies for urban planning and emergency management.
This session aims to gather multidisciplinary contributions that bridge the fields of seismology geology, geotechnics, and engineering and will focus on the following topics:
- Site characterization and seismic microzonation;
- Empirical assessments of stratigraphic and topographic amplification effects;
- Quantitative evaluation of seismic site response in 1D, 2D, and 3D configuration;
- Earthquake-induced ground effects, such as landslides, liquefaction and cavity collapse;
- Soil-structure interaction and characterization of building response to seismic events;
- Proposals for integration and/or revision of building codes;
- Analysis of historical and cultural heritage sites.
The session also aims to collect results based on different geophysical techniques (e.g., earthquake data, ambient noise analysis, HVSR, array measurements, active surface wave prospecting, ERT, GPR, seismic refraction tomography, etc.) and their integration. Contributions regarding innovative methodologies as Distributed Acoustic Sensing (DAS) systems and dense arrays are well accepted.