Understanding the scale-dependent interactions of the atmosphere and the mountain cryosphere are critical for estimating the response of snow and ice to ongoing climate change. A lack of observational data and/or process understanding in high mountain regions creates substantial uncertainties with respect to future cryospheric change and how it may react to climatic variability, climatic extremes and long-term warming. Atmospheric dynamics in mountain regions are complex and further complicated by a rapidly changing cryosphere which may not be appropriately represented in atmospheric models used to estimate the mountain surface energy balance and mass changes of snow and ice.
This session aims to address the current challenges, methodological approaches and wider relevance of observing and modelling cryosphere-atmosphere interactions at varying scales in mountain environments around the world. We welcome contributions including, but not limited to, the characterisation and quantification of glacier/snow boundary layer exchanges, observations and modelling of katabatic winds and turbulent structures over the mountain cryosphere, the role of glaciers in valley circulation systems, the cryosphere and elevation-dependent warming, advances in atmospheric modelling and/or meteorological downscaling over high elevation snow and ice or the representation of glacier meteorology in numerical weather models or models of glacier energy/mass. We particularly welcome submissions related to the modulating role of cryospheric boundary layers in the face of ongoing climate changes in mountain regions.
Cryosphere-Atmosphere Interactions in Mountain Environments
Co-organized by AS4
Convener:
Thomas Shaw
|
Co-conveners:
Ivana Stiperski,
Christina DraegerECSECS,
Arindan MandalECSECS,
Lindsey Nicholson