Deep Learning has seen accelerated adoption across Hydrology and the broader Earth Sciences. This session highlights the continued integration of deep learning and its many variants into traditional and emerging hydrology-related workflows. We welcome abstracts related to novel theory development, new methodologies, or practical applications of deep learning in hydrological modeling and process understanding. This might include, but is not limited to, the following:
(1) Development of novel deep learning models or modeling workflows.
(2) Probing, exploring and improving our understanding of the (internal) states/representations of deep learning models to improve models and/or gain system insights.
(3) Understanding the reliability of deep learning, e.g., under non-stationarity and climate change.
(4) Modeling human behavior and impacts on the hydrological cycle.
(5) Deep Learning approaches for extreme event analysis, detection, and mitigation.
(6) Natural Language Processing in support of models and/or modeling workflows.
(7) Applications of Large Language Models and Large Multimodal Models (e.g. ChatGPT, Gemini, etc.) in the context of hydrology.
(8) Uncertainty estimation for and with Deep Learning.
(9) Advances towards foundational models in the context of hydrology and Earth Sciences more generally.
(10) Exploration of different training strategies, such as self-supervised learning, unsupervised learning, and reinforcement learning.
Deep learning in hydrology
Co-organized by ESSI1/NP1
Convener:
Frederik KratzertECSECS
|
Co-conveners:
Basil KraftECSECS,
Daniel KlotzECSECS,
Martin Gauch,
Riccardo Taormina