ERE3.1 | Secure subsurface storage for future energy systems
EDI
Secure subsurface storage for future energy systems
Convener: Johannes Miocic | Co-conveners: Niklas Heinemann, Auregan Boyet, Mayukh Talukdar, Wenzhuo Cao

Storage of energy (e.g., hydrogen, heat) and carbon dioxide in subsurface geological formations is of key importance in the transition to a carbon-neutral economy relying on renewables-based power and heat generation. The suitability of subsurface storage sites depends on hydromechanical properties of the reservoir and its confining units, and integrity of seals due to induced thermal, mechanical, hydraulic and chemical changes. Secure subsurface storage, as well as public acceptance of key enabling technologies, requires abundant geological knowledge, routine monitoring and sound evaluation of potential risks. This session offers a platform for interdisciplinary scientific exchanges between different branches of storage expertise, and aims to address challenges concerning the storage of fluids in geological reservoirs from core- to field-scale. This session invites submissions encompassing theoretical analyses, laboratory experiments, numerical modeling and field testing in advancing understanding of multiple physics involved in subsurface storage. Case studies and operational projects integrating different elements of the storage chain, as well as field projects focusing on geological energy/carbon storage, are particularly welcome.

Relevant topics include:
• Regional and local characterization of storage formations, caprocks, and fault structures, and their short- and long-term physical and chemical behaviour during injection and storage operations
• Evaluation of existing infrastructure and fluid injection strategies for effective subsurface storage
• Geophysical, geomechanical and geochemical monitoring and measurements for safe and cost-efficient storage
• Coupling of different energy storage types in a carbon-neutral power system
• Heat exchange systems, including aquifer thermal energy storage systems
• Techno-economics and public perception of energy storage systems


Suitable contributions can address, but are not limited to:
• Field monitoring techniques and fit-for-purpose testing technologies aimed at characterizing storage sites and behaviour of injected fluids
• Laboratory experiments investigating fluid-rock interactions
• Evaluation of caprock and fault stability and wellbore integrity, and associated leakage potential and induced seismicity
• Numerical modelling of migration, containment and geochemical reactions of injected fluids, and injectivity and pressure response of reservoirs

Storage of energy (e.g., hydrogen, heat) and carbon dioxide in subsurface geological formations is of key importance in the transition to a carbon-neutral economy relying on renewables-based power and heat generation. The suitability of subsurface storage sites depends on hydromechanical properties of the reservoir and its confining units, and integrity of seals due to induced thermal, mechanical, hydraulic and chemical changes. Secure subsurface storage, as well as public acceptance of key enabling technologies, requires abundant geological knowledge, routine monitoring and sound evaluation of potential risks. This session offers a platform for interdisciplinary scientific exchanges between different branches of storage expertise, and aims to address challenges concerning the storage of fluids in geological reservoirs from core- to field-scale. This session invites submissions encompassing theoretical analyses, laboratory experiments, numerical modeling and field testing in advancing understanding of multiple physics involved in subsurface storage. Case studies and operational projects integrating different elements of the storage chain, as well as field projects focusing on geological energy/carbon storage, are particularly welcome.

Relevant topics include:
• Regional and local characterization of storage formations, caprocks, and fault structures, and their short- and long-term physical and chemical behaviour during injection and storage operations
• Evaluation of existing infrastructure and fluid injection strategies for effective subsurface storage
• Geophysical, geomechanical and geochemical monitoring and measurements for safe and cost-efficient storage
• Coupling of different energy storage types in a carbon-neutral power system
• Heat exchange systems, including aquifer thermal energy storage systems
• Techno-economics and public perception of energy storage systems


Suitable contributions can address, but are not limited to:
• Field monitoring techniques and fit-for-purpose testing technologies aimed at characterizing storage sites and behaviour of injected fluids
• Laboratory experiments investigating fluid-rock interactions
• Evaluation of caprock and fault stability and wellbore integrity, and associated leakage potential and induced seismicity
• Numerical modelling of migration, containment and geochemical reactions of injected fluids, and injectivity and pressure response of reservoirs