ERE3.7 | Carbon capture and storage in mafic and ultramafic rocks
EDI
Carbon capture and storage in mafic and ultramafic rocks
Convener: Deirdre E. ClarkECSECS | Co-conveners: Marthe Grønlie Guren, Oliver Plümper, Christophe Galerne

Reducing the amount of carbon dioxide in the atmosphere with a leakage-free geostorage solution for CO2 sequestration is of great importance. Mafic and ultramafic materials (basalts and peridotites) are promising storage rock reservoirs with highly reactive surfaces that provide divalent cations involved in rapid carbonate mineralization reactions occurring within months of injection. Although it is potentially safer than storage in conventional deep sandstone acquirers, the technology of carbon sequestration in mafic and ultramafic rocks is still in its infancy with a few pilot and industrial-scale sites (e.g., Iceland and Washington, USA), and involves many processes at multiple scales, such as reactive fluid flow, weathering, and reaction kinetics.

We invite contributions related to mineral trapping and fracturing in mafic and ultramafic rocks. This session seeks contributions covering multi-scale and various methodologies to broaden our comprehension on CO2 storage, ranging from field observations, microstructural experiments, geochemical analyses to numerical modelling.

Reducing the amount of carbon dioxide in the atmosphere with a leakage-free geostorage solution for CO2 sequestration is of great importance. Mafic and ultramafic materials (basalts and peridotites) are promising storage rock reservoirs with highly reactive surfaces that provide divalent cations involved in rapid carbonate mineralization reactions occurring within months of injection. Although it is potentially safer than storage in conventional deep sandstone acquirers, the technology of carbon sequestration in mafic and ultramafic rocks is still in its infancy with a few pilot and industrial-scale sites (e.g., Iceland and Washington, USA), and involves many processes at multiple scales, such as reactive fluid flow, weathering, and reaction kinetics.

We invite contributions related to mineral trapping and fracturing in mafic and ultramafic rocks. This session seeks contributions covering multi-scale and various methodologies to broaden our comprehension on CO2 storage, ranging from field observations, microstructural experiments, geochemical analyses to numerical modelling.