Faults and fractures are critical components of geological reservoirs, exerting significant control over the physical and mechanical properties of subsurface formations. Their influence on fluid behaviour and fluid-rock interactions plays a crucial role in the success and safety of geoenergy applications, including geothermal energy, carbon capture and storage (CCS), and subsurface energy and waste storage.
Recent advancements in field observations, monitoring technologies, and laboratory experiments have deepened our understanding of how faults and fractures impact deformation processes, rock failure, and fault/fracture (re-)activation. These discontinuities act as conduits or barriers for fluid flow, transport and heat flow, leading to complex interactions that can either enhance or impair reservoir performance. Of particular concern are the changes in the thermo-hydro-mechanical-chemical (THMC) properties due to hydraulic stimulation and fluid circulation within faulted and fractured zones, which can alter transmissibility and influence the stability of these structures.
Understanding these dynamics is crucial for predicting and mitigating risks associated with induced seismicity, leakage, and other subsurface hazards. Furthermore, insights gained from these studies are essential for improving the accuracy of numerical models, which are used to predict fault behaviour at reservoir scales and guide the design and management of geoenergy projects.
We invite contributions from researchers who are exploring the role of faults and fractures in subsurface systems, particularly those involved in applied or interdisciplinary studies related to low-carbon technologies. We are particularly interested in research that bridges the gap between laboratory-scale measurements and field-scale processes, and that employs a diverse range of methods, including but not limited to outcrop studies, in-situ experiments and monitoring, subsurface data analysis, and laboratory investigations. Interdisciplinary approaches that integrate geological, geophysical, and engineering perspectives are especially welcome.
The session aims to provide a comprehensive understanding of the impact of faults and fractures on subsurface energy systems, showcasing innovative methods for their characterisation and management.
Faults and fractures in geoenergy applications 1: Monitoring, laboratory and field work results
Co-organized by EMRP1/TS8
Convener:
Roberto Emanuele Rizzo
|
Co-conveners:
Sarah WeihmannECSECS,
Reza Jalali,
Nathaniel Forbes InskipECSECS