SSS6.2 | Soil structure dynamics and its relevance to soil functions
EDI
Soil structure dynamics and its relevance to soil functions
Convener: Loes van Schaik | Co-conveners: Frederic Leuther, John Koestel, Ophélie Sauzet

Soil structure and its stability determine soil physical functions and chemical properties such as water retention, hydraulic conductivity, macropore flow, matter transport, nutrient leaching, redox potentials, and susceptibility to erosion. These soil physical and chemical characteristics are fundamental for biological processes, among them root penetration and organic matter and nutrient dynamics. The soil pore network determines soil aeration, and to a large part the soil hydrological regime and forms the habitat for soil biota, which in turn actively reshape the soil pore network. The soil biota, root growth, land management practices like tillage and abiotic drivers (e.g. wetting/drying cycles) lead to a constant evolution of the arrangement of pores, minerals and organic matter. With this, also the soil functions and properties are perpetually changing. The importance of the interaction between soil structure (and thus soil functions) on one side and soil biology, climate and soil management on the other, is highlighted by recent research outcomes, which are based on advanced imaging techniques and novel experimental setups. Understanding the mechanisms and factors controlling soil functions is a prerequisite for climate smart farming systems. Still, present studies have barely scratched the surface of what there is to discover.

In this session, we are inviting contributions on the formation and alteration of soil structure and its associated soil functions over time. Special focuses are on feedbacks between soil structure dynamics and soil biology as well as the impact of mechanical stress exerted by heavy vehicles deployed under land management operations. Further, we encourage submissions that integrate complementary measurement techniques or aim at bridging different scales.

Soil structure and its stability determine soil physical functions and chemical properties such as water retention, hydraulic conductivity, macropore flow, matter transport, nutrient leaching, redox potentials, and susceptibility to erosion. These soil physical and chemical characteristics are fundamental for biological processes, among them root penetration and organic matter and nutrient dynamics. The soil pore network determines soil aeration, and to a large part the soil hydrological regime and forms the habitat for soil biota, which in turn actively reshape the soil pore network. The soil biota, root growth, land management practices like tillage and abiotic drivers (e.g. wetting/drying cycles) lead to a constant evolution of the arrangement of pores, minerals and organic matter. With this, also the soil functions and properties are perpetually changing. The importance of the interaction between soil structure (and thus soil functions) on one side and soil biology, climate and soil management on the other, is highlighted by recent research outcomes, which are based on advanced imaging techniques and novel experimental setups. Understanding the mechanisms and factors controlling soil functions is a prerequisite for climate smart farming systems. Still, present studies have barely scratched the surface of what there is to discover.

In this session, we are inviting contributions on the formation and alteration of soil structure and its associated soil functions over time. Special focuses are on feedbacks between soil structure dynamics and soil biology as well as the impact of mechanical stress exerted by heavy vehicles deployed under land management operations. Further, we encourage submissions that integrate complementary measurement techniques or aim at bridging different scales.