SSS5.8 | Metal(loid)s in Soil-Plant Systems
Metal(loid)s in Soil-Plant Systems
Convener: Marie Muehe | Co-conveners: Carolina Vergara Cid, Marek Vaculik, Matthias Wiggenhauser

While many trace metal(loid)s (e.g., Zn, Cu, Fe) are essential for plants and humans, they can harm soil fertility or reduce yields at high concentrations. Other metal(loid)s are non-essential but can be readily transferred from soils via crops into the food chain and threaten human health (e.g., As, Cd, Hg, Sb). To understand the behavior, fate and effects of essential and non-essential metal(loid)s in soils and plants, it is crucial to quantify their fluxes and to identify the biogeochemical processes that control their mobility. This session aims to spotlight i) the latest advancements in methodologies, including elemental, isotopic, spectroscopic, microbial profiling, and imaging techniques to investigate the biogeochemical processes that govern metal(loid) mobility in soil-plant systems; ii) studies that offer novel insights into the fate of metal(loid)s in distinct soils, plants, and holistic soil-plant systems. We welcome contributions that include fundamental and applied research based on laboratory work, soil incubation experiments, greenhouse experiments, field experiments, and/or modeling approaches. This session also encourages research investigating the potential effects of ongoing and future global changes, such as climate change and healthy food production. Additionally, we seek studies proposing solutions to deal with metal(loid) excess (e.g., phytoremediation) and limited trace metal(loid) supply for crops (e.g., fertilization, plant breeding).

While many trace metal(loid)s (e.g., Zn, Cu, Fe) are essential for plants and humans, they can harm soil fertility or reduce yields at high concentrations. Other metal(loid)s are non-essential but can be readily transferred from soils via crops into the food chain and threaten human health (e.g., As, Cd, Hg, Sb). To understand the behavior, fate and effects of essential and non-essential metal(loid)s in soils and plants, it is crucial to quantify their fluxes and to identify the biogeochemical processes that control their mobility. This session aims to spotlight i) the latest advancements in methodologies, including elemental, isotopic, spectroscopic, microbial profiling, and imaging techniques to investigate the biogeochemical processes that govern metal(loid) mobility in soil-plant systems; ii) studies that offer novel insights into the fate of metal(loid)s in distinct soils, plants, and holistic soil-plant systems. We welcome contributions that include fundamental and applied research based on laboratory work, soil incubation experiments, greenhouse experiments, field experiments, and/or modeling approaches. This session also encourages research investigating the potential effects of ongoing and future global changes, such as climate change and healthy food production. Additionally, we seek studies proposing solutions to deal with metal(loid) excess (e.g., phytoremediation) and limited trace metal(loid) supply for crops (e.g., fertilization, plant breeding).