G3.4 | Hydrological Loading: Measuring and Modeling
EDI
Hydrological Loading: Measuring and Modeling
Co-organized by HS13
Convener: Mohammad J. Tourian | Co-conveners: Joëlle Nicolas, Makan Karegar, Susanna Werth, Francesca Silverii

The redistribution of fluid mass across the Earth’s surface and near-surface, driven by water cycle dynamics and its extremes, can cause measurable load-induced deformation. In recent decades, increasingly accurate and available space geodetic measurement techniques (e.g., GNSS, InSAR, satellite gravimetry, satellite altimetry) have enriched our understanding of this response. Accurate observations of crustal deformation, combined with geophysical models, can be used to quantify hydrological loads, providing new insights into related hydrological processes. This session aims to attract research that advances our ability to accurately quantify hydrological mass loads across different temporal and spatial scales, involving various hydrological compartments (e.g., groundwater, surface water, snow, ice). We invite studies focusing on innovative measurement and modeling approaches, and on reconciling observations from different geodetic measurement techniques used to study hydrological loading. Research that assesses the strengths and limitations of each approach and proposes strategies for seamless and accurate integration is highly encouraged. Additionally, we seek studies that conduct intercomparisons of different hydrological model data (e.g., from land surface models and hydrological models) and geodetic measurement techniques to understand their relative strengths, weaknesses, and accuracies.

The redistribution of fluid mass across the Earth’s surface and near-surface, driven by water cycle dynamics and its extremes, can cause measurable load-induced deformation. In recent decades, increasingly accurate and available space geodetic measurement techniques (e.g., GNSS, InSAR, satellite gravimetry, satellite altimetry) have enriched our understanding of this response. Accurate observations of crustal deformation, combined with geophysical models, can be used to quantify hydrological loads, providing new insights into related hydrological processes. This session aims to attract research that advances our ability to accurately quantify hydrological mass loads across different temporal and spatial scales, involving various hydrological compartments (e.g., groundwater, surface water, snow, ice). We invite studies focusing on innovative measurement and modeling approaches, and on reconciling observations from different geodetic measurement techniques used to study hydrological loading. Research that assesses the strengths and limitations of each approach and proposes strategies for seamless and accurate integration is highly encouraged. Additionally, we seek studies that conduct intercomparisons of different hydrological model data (e.g., from land surface models and hydrological models) and geodetic measurement techniques to understand their relative strengths, weaknesses, and accuracies.