NH8.2 | Radioactivity in the environment: opportunities for geosciences and implications for human health
EDI
Radioactivity in the environment: opportunities for geosciences and implications for human health
Co-organized by GI2
Convener: Eleonora BenàECSECS | Co-conveners: Virginia Strati, Alessandra Sciarra, Anita Erőss, Eric Petermann

Natural radioactivity fully affects our environment as a result of cosmic radiation from space and terrestrial sources from soil and minerals in rocks containing primordial radionuclides as Uranium, Thorium and Potassium. Among the terrestrial sources, Radon (222Rn) gas is considered the major source of ionising radiation exposure to the population and an indoor air pollutant due to its harmful effects on human health (cancerogenic, W.H.O.). Also, artificial radionuclides from nuclear and radiation accidents and incidents provide an additional contribution to the environmental radioactivity.
This session embraces all the aspects and challenges of environmental radioactivity including geological surveys, mineral and space resources exploration, atmosphere tracing with greenhouse gases and pollutant, groundwater contamination and a specific focus on radon hazard and risk assessment.
Studies about the use of fallout radionuclides as environmental tracers and the relevance of the radioactivity for public health, including the contamination from Naturally Occurring Radioactive Materials (NORM), are welcome.
Contributions on novel methods and instrumentation for environmental radioactivity monitoring including portable detectors, airborne and drones’ surveys and geostatistical methods for radioactivity mapping are also encouraged.

Natural radioactivity fully affects our environment as a result of cosmic radiation from space and terrestrial sources from soil and minerals in rocks containing primordial radionuclides as Uranium, Thorium and Potassium. Among the terrestrial sources, Radon (222Rn) gas is considered the major source of ionising radiation exposure to the population and an indoor air pollutant due to its harmful effects on human health (cancerogenic, W.H.O.). Also, artificial radionuclides from nuclear and radiation accidents and incidents provide an additional contribution to the environmental radioactivity.
This session embraces all the aspects and challenges of environmental radioactivity including geological surveys, mineral and space resources exploration, atmosphere tracing with greenhouse gases and pollutant, groundwater contamination and a specific focus on radon hazard and risk assessment.
Studies about the use of fallout radionuclides as environmental tracers and the relevance of the radioactivity for public health, including the contamination from Naturally Occurring Radioactive Materials (NORM), are welcome.
Contributions on novel methods and instrumentation for environmental radioactivity monitoring including portable detectors, airborne and drones’ surveys and geostatistical methods for radioactivity mapping are also encouraged.