AS1.13 | Advancing understanding of the circulation-coupling and Lagrangian evolution of clouds
EDI
Advancing understanding of the circulation-coupling and Lagrangian evolution of clouds
Convener: Raphaela Vogel | Co-conveners: Matthias Tesche, Geet George, Julia Kukulies, Leif Denby

The uncertain response of clouds to global warming is a major contributor to uncertainty in climate sensitivity. Cloud feedback uncertainty is related to a limited understanding of the coupling between clouds, convection and the large-scale circulation across various spatial and temporal scales. Today's wealth of advanced remote-sensing observations and high-resolution modelling data provides comprehensive and complementary information that enables detailed process and lifecycle-based analyses. This session focuses on (1) efforts to advance our understanding of the cloud-circulation coupling and its role in climate change, and (2) Lagrangian studies related to clouds and water vapour. We invite contributions from dedicated field campaigns, from ground-based and satellite remote sensing or in situ measurements, as well as modelling and theoretical studies. This year we particularly welcome early results from the recent ORCESTRA field campaign and the various ongoing model intercomparisons, like EUREC4A-MIP, CP-MIP and Lagrangian LES MIP. We also invite abstracts focusing on the role of mesoscale convective organization, aerosol-cloud interactions, feature tracking, and Langrangian cloud modelling.

The uncertain response of clouds to global warming is a major contributor to uncertainty in climate sensitivity. Cloud feedback uncertainty is related to a limited understanding of the coupling between clouds, convection and the large-scale circulation across various spatial and temporal scales. Today's wealth of advanced remote-sensing observations and high-resolution modelling data provides comprehensive and complementary information that enables detailed process and lifecycle-based analyses. This session focuses on (1) efforts to advance our understanding of the cloud-circulation coupling and its role in climate change, and (2) Lagrangian studies related to clouds and water vapour. We invite contributions from dedicated field campaigns, from ground-based and satellite remote sensing or in situ measurements, as well as modelling and theoretical studies. This year we particularly welcome early results from the recent ORCESTRA field campaign and the various ongoing model intercomparisons, like EUREC4A-MIP, CP-MIP and Lagrangian LES MIP. We also invite abstracts focusing on the role of mesoscale convective organization, aerosol-cloud interactions, feature tracking, and Langrangian cloud modelling.