AS3.36 | Advances in the measurement and modelling of radicals and their precursors in the troposphere
EDI
Advances in the measurement and modelling of radicals and their precursors in the troposphere
Convener: Keding Lu | Co-conveners: Sébastien Dusanter, Anna Novelli, Zhaofeng Tan, Lisa Whalley

Atmospheric radicals (OH, HO2, RO2, NO3, and halogen oxides) drive the oxidation of trace gases, promoting secondary pollution formation and influencing the climate. Understanding the sources (reactive species, e.g. HCHO, HONO, ClNO2 etc.) and fate (unimolecular and bimolecular chemical reactions, the later involving primary pollutants and CH4) of radicals is fundamental to tackle regional pollution and climate change. Measuring and modelling radicals is important but extremely challenging due to their low concentration, high reactivity and the complexity of reactions that they initiate.

This session invites results relating to radical measurements and modelling including:

1. The development of different techniques for radical detection and quantification, their precursors and intermediates species;

2. The adaption of instruments to different platforms (ground, mobile, shipborne, airborne, etc.);

3. Quality assurance (e.g. calibration procedures, inter-comparison of different techniques);

4. Model development (e.g. new chemical reactions/mechanisms, new model configuration, uncertainty analysis);

5. The implementation of radical measurements and modelling in the field and in chamber studies.

Atmospheric radicals (OH, HO2, RO2, NO3, and halogen oxides) drive the oxidation of trace gases, promoting secondary pollution formation and influencing the climate. Understanding the sources (reactive species, e.g. HCHO, HONO, ClNO2 etc.) and fate (unimolecular and bimolecular chemical reactions, the later involving primary pollutants and CH4) of radicals is fundamental to tackle regional pollution and climate change. Measuring and modelling radicals is important but extremely challenging due to their low concentration, high reactivity and the complexity of reactions that they initiate.

This session invites results relating to radical measurements and modelling including:

1. The development of different techniques for radical detection and quantification, their precursors and intermediates species;

2. The adaption of instruments to different platforms (ground, mobile, shipborne, airborne, etc.);

3. Quality assurance (e.g. calibration procedures, inter-comparison of different techniques);

4. Model development (e.g. new chemical reactions/mechanisms, new model configuration, uncertainty analysis);

5. The implementation of radical measurements and modelling in the field and in chamber studies.