SM2.2 | Machine learning for time series in geophysics
EDI
Machine learning for time series in geophysics
Co-organized by ESSI1/NP4
Convener: Jannes MünchmeyerECSECS | Co-conveners: Josefine Umlauft, René Steinmann, Léonard Seydoux, Fabio Corbi

Over the last decade, a flurry of machine learning methods has led to novel insights throughout geophysics. As wide as the applications are the data types processed, including environmental parameters, GNSS, InSAR, infrasound, and seismic data, but also downstream structured data products such as 3D data cubes, earthquake catalogs, seismic velocity changes. Countless methods have been proposed and successfully applied, ranging from traditional techniques to recent deep learning models. At the same time, we are increasingly seeing the adoption of machine learning techniques in the wider geophysics community, driven by continuously growing data archives, accessible codes, and software. Yet, the landscape of available methods and data types is difficult to navigate, even for experienced researchers.

In this session, we want to bring together machine learning researchers and practitioners throughout the domains of geophysics. We aim to identify common challenges connecting different tasks and data types and formats, and outline best practices for the development and use of machine learning. We also want to discuss how recent trends in machine learning, such as foundation models, the shift to multimodality, or physics informed models may impact geophysical research. We welcome contributions from all fields of geophysics, covering a wide range of data types and machine learning techniques. We also encourage contributions for machine learning adjacent tasks, such as big-data management, data visualization, or software development in the field of machine learning.

Over the last decade, a flurry of machine learning methods has led to novel insights throughout geophysics. As wide as the applications are the data types processed, including environmental parameters, GNSS, InSAR, infrasound, and seismic data, but also downstream structured data products such as 3D data cubes, earthquake catalogs, seismic velocity changes. Countless methods have been proposed and successfully applied, ranging from traditional techniques to recent deep learning models. At the same time, we are increasingly seeing the adoption of machine learning techniques in the wider geophysics community, driven by continuously growing data archives, accessible codes, and software. Yet, the landscape of available methods and data types is difficult to navigate, even for experienced researchers.

In this session, we want to bring together machine learning researchers and practitioners throughout the domains of geophysics. We aim to identify common challenges connecting different tasks and data types and formats, and outline best practices for the development and use of machine learning. We also want to discuss how recent trends in machine learning, such as foundation models, the shift to multimodality, or physics informed models may impact geophysical research. We welcome contributions from all fields of geophysics, covering a wide range of data types and machine learning techniques. We also encourage contributions for machine learning adjacent tasks, such as big-data management, data visualization, or software development in the field of machine learning.