SM4.3 | Toward a comprehensive understanding of slow earthquakes
EDI
Toward a comprehensive understanding of slow earthquakes
Convener: Wei Peng | Co-conveners: Marco Maria Scuderi, Yuji Itoh, Mariano Supino, Qing-Yu WangECSECS

Slow earthquakes, frequently observed in subduction zones, intermittently dissipate tectonic strain within the brittle-ductile transition zone. Their close relationship to the seismogenic megathrust emphasizes their significance in understanding the stress dynamics of the megathrust events. Yet, debates about their mechanisms, scaling properties, and interplay with rapid earthquakes remain. Leveraging cutting-edge technologies, advanced observational methods, and sophisticated modeling, this session attempts to bring together the diversity of works associated with several aspects listed below, to broaden our understanding and encourage discussions:


Underlying Mechanisms: Investigating the micro-mechanics, frictional behaviors, rupture dynamics, and temperature and pressure conditions initiating and driving slow slip events
Scaling Relationships: Decoding the scaling of slow earthquakes across time, space, and energy dimensions, offering insights into their core dynamics
Technological Innovations: Showcasing avant-garde tools and methodologies that boost our proficiency in detecting, analyzing, and understanding slow earthquakes
Interplay between Slow and Fast Earthquakes: Probing into the seismic cycle, their mutual impacts, and potential warning signs exhibited by diverse seismic phenomena
Influences of Fluids and Heterogeneities: Assessing the roles these elements play in influencing, directing, or obstructing the behavior of slow earthquakes and how they impact rupture mechanics

We invite contributions that span from detailed laboratory experiments to the vast scales of volcanic and tectonic research; from varied geological and geophysical observations to imaging and modeling, including but not limited to seismic and geodetic, all insights are valued. In alignment with this session's overarching theme, we particularly welcome abstracts that elucidate the ties between slow and fast earthquakes, studies on aseismic processes, and on the recent powerful earthquakes in the Nankai Trough in 2024.

Slow earthquakes, frequently observed in subduction zones, intermittently dissipate tectonic strain within the brittle-ductile transition zone. Their close relationship to the seismogenic megathrust emphasizes their significance in understanding the stress dynamics of the megathrust events. Yet, debates about their mechanisms, scaling properties, and interplay with rapid earthquakes remain. Leveraging cutting-edge technologies, advanced observational methods, and sophisticated modeling, this session attempts to bring together the diversity of works associated with several aspects listed below, to broaden our understanding and encourage discussions:


Underlying Mechanisms: Investigating the micro-mechanics, frictional behaviors, rupture dynamics, and temperature and pressure conditions initiating and driving slow slip events
Scaling Relationships: Decoding the scaling of slow earthquakes across time, space, and energy dimensions, offering insights into their core dynamics
Technological Innovations: Showcasing avant-garde tools and methodologies that boost our proficiency in detecting, analyzing, and understanding slow earthquakes
Interplay between Slow and Fast Earthquakes: Probing into the seismic cycle, their mutual impacts, and potential warning signs exhibited by diverse seismic phenomena
Influences of Fluids and Heterogeneities: Assessing the roles these elements play in influencing, directing, or obstructing the behavior of slow earthquakes and how they impact rupture mechanics

We invite contributions that span from detailed laboratory experiments to the vast scales of volcanic and tectonic research; from varied geological and geophysical observations to imaging and modeling, including but not limited to seismic and geodetic, all insights are valued. In alignment with this session's overarching theme, we particularly welcome abstracts that elucidate the ties between slow and fast earthquakes, studies on aseismic processes, and on the recent powerful earthquakes in the Nankai Trough in 2024.