ST2.8 | Plasma energization and energy transport: the need for multi-scale observations in Geospace
EDI
Plasma energization and energy transport: the need for multi-scale observations in Geospace
Co-organized by NP3/PS4
Convener: Matthew Taylor | Co-conveners: Giulia CozzaniECSECS, Markku AlhoECSECS, Maria Federica Marcucci, Oreste PezziECSECS

Understanding plasma energization and energy transport is a grand challenge of space plasma physics, and due to its vicinity, Geospace provides an excellent laboratory to investigate them. Strong plasma energization and energy transport occur at boundaries and boundary layers such as the foreshock, the bow shock, the magnetosheath, the magnetopause, the magnetotail current sheet, and the transition region. Fundamental plasma processes such as shock formation, magnetic reconnection, turbulence, wave-particle interactions, plasma jet braking, field-aligned currents generation and their combinations initiate and govern plasma energization and energy transport.
ESA/Cluster and NASA/MMS four-point constellations, as well as the large-scale multipoint mission NASA/THEMIS, have greatly improved our understanding of these processes at individual scales compared to earlier single-point measurements. However, such missions, as well as theory and numerical simulations, also revealed that these processes operate across multiple scales ranging from the large fluid to the smaller kinetic scales, implying that scale coupling is critical. Simultaneous in situ measurements at both large, fluid and small, kinetic scales are required to resolve scale coupling and ultimately fully understand plasma energization and energy transport processes. Such measurements are currently not yet available.
Building on previous single-scale missions, multiscale missions such as HelioSwarm and mission concepts such as MagCon and Plasma Observatory represent the next generation of space plasma physics investigations. Coordination of all of these assets and ideas is also part of a drive towards a new International Solar Terrestrial Physics program (ISTPNext), to focus on the system of systems that is heliophysics.
This session invites submissions on the topic of scale coupling in fundamental plasma processes, covering in situ observations, theory and simulations, multipoint data analysis methods and instrumentation. Submissions on coordination with ground based observations as well as on remote solar and astrophysical observations are also encouraged.