GMVP1.1 | Old dog, new tricks: Novel applications of isotope geochemistry to investigate fluid-rock interaction, deformation and metamorphism
Old dog, new tricks: Novel applications of isotope geochemistry to investigate fluid-rock interaction, deformation and metamorphism
Convener: Veronica PeverelliECSECS | Co-conveners: Kristijan Rajič, Rebecca Robertson, William Osborne, Kristian Drivenes

Isotope geochemistry holds the key to understanding fluid-mineral-(melt) interaction and associated geochemical evolution of the Earth’s lithosphere. Recent advances in the isotopic analysis of geological materials have led to significant improvements in analytical precision and resolution, and the widespread employment of an ever-expanding array of isotopes. Similarly, the past decade has seen renewed interest in the use of ‘tried-and-tested’ isotopic systems in novel applications and diverse geodynamic settings. As such, innovative application of isotope geochemistry has the potential to provide profound insights into processes including hydrothermalism, ore-genesis, crustal deformation and alteration, subsurface geological storage, and the long-term cycling of volatile elements on Earth.
This broad session will bring together scientists at the forefront of high and low-temperature geochemical research to explore the diversity of available approaches and techniques. We invite contributions employing stable and radiogenic isotope geochemistry to provide fresh insight into processes of fluid-rock interaction, deformation and metamorphism in any facet of the solid Earth system. We also welcome contributions involving novel isotopic systems and/or unconventional bulk and in-situ analytical techniques, strategies and methodologies.

Isotope geochemistry holds the key to understanding fluid-mineral-(melt) interaction and associated geochemical evolution of the Earth’s lithosphere. Recent advances in the isotopic analysis of geological materials have led to significant improvements in analytical precision and resolution, and the widespread employment of an ever-expanding array of isotopes. Similarly, the past decade has seen renewed interest in the use of ‘tried-and-tested’ isotopic systems in novel applications and diverse geodynamic settings. As such, innovative application of isotope geochemistry has the potential to provide profound insights into processes including hydrothermalism, ore-genesis, crustal deformation and alteration, subsurface geological storage, and the long-term cycling of volatile elements on Earth.
This broad session will bring together scientists at the forefront of high and low-temperature geochemical research to explore the diversity of available approaches and techniques. We invite contributions employing stable and radiogenic isotope geochemistry to provide fresh insight into processes of fluid-rock interaction, deformation and metamorphism in any facet of the solid Earth system. We also welcome contributions involving novel isotopic systems and/or unconventional bulk and in-situ analytical techniques, strategies and methodologies.