GMVP1.3 | Sedimentary Provenance Analysis – Methods and Applications
EDI
Sedimentary Provenance Analysis – Methods and Applications
Co-organized by SSP3
Convener: Jan SchönigECSECS | Co-conveners: Chris Mark, N. Keno Lünsdorf, Laura Stutenbecker

The operation of the terrestrial heat engine manifests geologically in ceaseless mass transfer between lithological reservoirs, under the action of tectonic and surface processes. Sedimentary Provenance Analysis is a broad and interdisciplinary field aiming to track these transfers and reconstruct Earth’s evolution on a wide range of temporal and spatial scales by studying detrital mineral grains. This encompasses the geodynamic evolution of mountain belts, paleogeographic reconstructions, changes in climatic conditions, and the tectono-magmatic-metamorphic evolution of planet Earth from the Hadean to present.

Tackling such topics requires disentanglement of inherently convoluted signals, calling for the application of multiple classical and novel methods of igneous, metamorphic, and sedimentary petrology as well as the statistical treatment of large datasets. This includes, for instance, (i) novel developments in in-situ geo- and thermochronology including double- and triple-dating of single U-hosting grains, and β-decay systems accessed by reaction-gas mass spectrometry (e.g., Lu-Hf and Rb-Sr); (ii) multivariate discrimination of grains from the same mineral species by using flexible algorithms (including machine learning) applied to the major-element, trace-element, and isotopic composition of single grains; (iii) petrological methods such as inclusion assemblages in detrital single grains and elastic thermobarometry; and (iv) statistical methods disentangling differences and patterns in large datasets of multi-proxy provenance data like Generalized Procrustes Analysis or three-way Multidimensional Scaling.

This session welcomes contributions that highlight methodical advances applicable in the interdisciplinary field of Sedimentary Provenance Analysis as well as studies that rely on such methods to tackle problems and answer questions on any temporal and spatial scale, with particular emphasis on bridging micro to macro to planetary scales.

The operation of the terrestrial heat engine manifests geologically in ceaseless mass transfer between lithological reservoirs, under the action of tectonic and surface processes. Sedimentary Provenance Analysis is a broad and interdisciplinary field aiming to track these transfers and reconstruct Earth’s evolution on a wide range of temporal and spatial scales by studying detrital mineral grains. This encompasses the geodynamic evolution of mountain belts, paleogeographic reconstructions, changes in climatic conditions, and the tectono-magmatic-metamorphic evolution of planet Earth from the Hadean to present.

Tackling such topics requires disentanglement of inherently convoluted signals, calling for the application of multiple classical and novel methods of igneous, metamorphic, and sedimentary petrology as well as the statistical treatment of large datasets. This includes, for instance, (i) novel developments in in-situ geo- and thermochronology including double- and triple-dating of single U-hosting grains, and β-decay systems accessed by reaction-gas mass spectrometry (e.g., Lu-Hf and Rb-Sr); (ii) multivariate discrimination of grains from the same mineral species by using flexible algorithms (including machine learning) applied to the major-element, trace-element, and isotopic composition of single grains; (iii) petrological methods such as inclusion assemblages in detrital single grains and elastic thermobarometry; and (iv) statistical methods disentangling differences and patterns in large datasets of multi-proxy provenance data like Generalized Procrustes Analysis or three-way Multidimensional Scaling.

This session welcomes contributions that highlight methodical advances applicable in the interdisciplinary field of Sedimentary Provenance Analysis as well as studies that rely on such methods to tackle problems and answer questions on any temporal and spatial scale, with particular emphasis on bridging micro to macro to planetary scales.