The dynamics of magmatic systems are driven by complex processes that span from deep mantle melt generation to surface eruptions. These processes involve complex melt-rock interactions, including melt generation in the upper mantle and lower crust, magma transport, differentiation, and emplacement in the crust, the genesis of energy and mineral resources, and volcanic extrusion with consequent hazards. Fluid-mechanical and thermo-chemical processes involving different phases (liquid melt, solid crystals, volatile fluids, and pyroclasts) emerge on sub-millimetre scales while influencing systems at the metre to kilometre scale. Understanding these processes requires a multidisciplinary approach, combining observations, experiments, and computational methods including forward and inverse modelling and machine learning.
Despite the crucial role of computational methods in integrating and interpreting data from various sources, there has been limited progress in establishing a dedicated community within volcanic and magmatic studies. This session aims to address this gap by focusing on computational approaches. We seek to bring together researchers working on forward and inverse modelling, machine learning, and other computational methods to foster a thriving community to complement well established observational and experimental communities.
We encourage contributions that explore the theory, application, and validation of computational approaches in the context of experimental and observational data. Topics of interest include, but are not limited to:
- Multiphase flow dynamics
- Thermodynamics and phase equilibria
- Magma transport and storage
- Chemical and rheological melt-rock interactions
- Crystallization and degassing processes
- Energy and mineral resource genesis
- Magma-hydrothermal interactions
- Eruption dynamics and hazards
This session aims to provide a platform for in-depth technical discussions that are challenging to facilitate in broader multidisciplinary sessions, ultimately fostering a stronger computational community within volcanic and magmatic studies.
Recent Advances in Computational Methods for Volcanic and Magmatic Studies
Co-organized by GD2