Understanding long-term solar resource variability is essential for planning and deployment of solar energy systems. These variabilities occur due to deterministic effects such as sun cycle and nondeterministic such as complex weather patterns. The NREL’s National Solar Radiation Database (NSRDB) provides long term solar resource data covering 1998- 2019 containing more than 2 million pixels over the Americas and gets updated on an annual basis. This dataset is satellite-based and uses a two-step physical model for it’s development. In the first step we retrieve cloud properties such as cloud mask, cloud type, cloud optical depth and effective radius. The second step uses a fast radiative transfer model to compute solar radiation. This dataset is ideal for studying solar resource variability. For this study, NSRDB version 3 which contains data from 1998-2017 on a half hourly and 4x4 km temporal and spatial resolution was used. The study analyzed the spatial and temporal trend of solar resource of global horizontal irradiance (GHI) and direct normal irradiance (DNI) using long-term 20-years NSRDB data. The coefficient of variation (COV) was used to analyze the spatio-temporal interannual and seasonal variabilities. The spatial variability was analyzed by comparing the center pixel to neighboring pixels. The spatial variability result showed higher COV as the number of neighboring pixels increased. Similarly, the temporal variability for the NSRDB domain ranges on average from ±10% for GHI and ±20% for DNI. Furthermore, the long-term variabilities were also analyzed using the Köppen-Geiger climate classification. This assisted in the interpretation of the result by reducing the originally large number of pixels into a smaller number of groups. This presentation will provided a unique look at long-term spatial and temporal variability of solar radiation using high-resolution satellite-based datasets.
How to cite: Sengupta, M. and Habte, A.: Analysis of Long-Term Solar Resource Variability Using NSRDB Version 3, EMS Annual Meeting 2021, online, 6–10 Sep 2021, EMS2021-193, https://doi.org/10.5194/ems2021-193, 2021.