The demand for increased accuracy in predicting solar power has grown considerably over recent years due to a rapid growth in grid-tied solar generation both utility scale and distributed. To increase confidence in forecasting solar power there is a need to provide reliable probabilistic solar radiation information that also minimizes error and uncertainty. Funded by the U.S. Department of Energy, the Weather Research and Forecasting (WRF)-Solar ensemble prediction system (WRF-Solar EPS) has been recently developed by a collaboration between the National Renewable Energy Laboratory and the National Center for Atmospheric Research. The WRF-Solar EPS is now ready to be disseminated to support the integration of solar generation resources and improve accuracy of day-ahead and intraday probabilistic solar forecasts. The first stage of our framework in developing WRF-Solar EPS required a specially designed method using a tangent linear (TL) sensitivity analysis to efficiently investigate uncertainties of WRF-Solar variables in forecasting clouds and solar irradiance. For the second stage, we applied a methodology to introduce stochastic perturbations in 14 key variables ascertained through the TL sensitivity analysis in generating ensemble members. A user-friendly interface is provided in WRF-Solar EPS, in which the parameters of stochastic perturbations can be controlled by configuration files. Lastly, we implemented an analog technique as an ensemble post-processing method to improve the performance of ensemble solar irradiance forecasts. This presentation will summarize the work performed in the past 3 years to understand the interactions between cloud physics, land surface, boundary layer and radiative transfer models through the development of a probabilistic cloud optimized day-ahead forecasting system based on WRF-Solar. For evaluation of forecasts, we adapt and use satellite-derived solar radiation data, e.g., the National Solar Radiation Data Base (NSRDB) as well as ground-measured observations. A comprehensive analysis to assess gridded model outputs over the Contiguous U.S is performed. The importance of evaluation of the WRF-Solar model with the NSRDB lies in the fact that the knowledge of the cloud-caused uncertainties in predicting solar irradiance over a wide range of regions provides model developers a detailed understanding of model strength and weaknesses in predicting clouds. Overall, we will present the detailed research steps that resulted in the development of the WRF-Solar EPS. We will also present a detailed validation demonstrating the improvements provided by this model. Moreover, we will also introduce the user’s guide for WRF-Solar EPS and future extension of this research.
How to cite: Sengupta, M., Jimenez, P., Yang, J., Kim, J.-H., and Xie, Y.: New Developments in Ensemble-based Probabilistic Forecasting of Solar Radiation: The WRF-Solar Ensemble Prediction System, EMS Annual Meeting 2021, online, 6–10 Sep 2021, EMS2021-347, https://doi.org/10.5194/ems2021-347, 2021.