EMS Annual Meeting Abstracts
Vol. 18, EMS2021-53, 2021
https://doi.org/10.5194/ems2021-53
EMS Annual Meeting 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Using machine learning to produce a very high-resolution land-cover map for Ireland and beyond

Geoffrey Bessardon1, Emily Gleeson1, and Eoin Walsh2
Geoffrey Bessardon et al.
  • 1Met Éireann, Climate Services, Research, Environment and Applications Division, Dublin 9, Ireland
  • 2SFI Center for Research Training in Foundations of Data Science,University of Limerick, Limerick, Ireland

An accurate representation of surface processes is essential for weather forecasting as it is where most of the thermal, turbulent and humidity exchanges occur. The Numerical Weather Prediction (NWP) system, to represent these exchanges, requires a land-cover classification map to calculate the surface parameters used in the turbulent, radiative, heat, and moisture fluxes estimations.

The land-cover classification map used in the HARMONIE-AROME configuration of the shared ALADIN-HIRLAM NWP system for operational weather forecasting is ECOCLIMAP. ECOCLIMAP-SG (ECO-SG), the latest version of ECOCLIMAP, was evaluated over Ireland to prepare ECO-SG implementation in HARMONIE-AROME. This evaluation suggested that sparse urban areas are underestimated and instead appear as vegetation areas in ECO-SG [1], with an over-classification of grassland in place of sparse urban areas and other vegetation covers (Met Éireann internal communication). Some limitations in the performance of the current HARMONIE-AROME configuration attributed to surface processes and physiography issues are well-known [2]. This motivated work at Met Éireann to evaluate solutions to improve the land-cover map in HARMONIE-AROME.

In terms of accuracy, resolution, and the future production of time-varying land-cover map, the use of a convolutional neural network (CNN) to create a land-cover map using Sentinel-2 satellite imagery [3] over Estonia [4] presented better potential outcomes than the use of local datasets [5]. Consequently, this method was tested over Ireland and proven to be more accurate than ECO-SG for representing CORINE Primary and Secondary labels and at a higher resolution [5]. This work is a continuity of [5] focusing on 1. increasing the number of labels, 2. optimising the training procedure, 3. expanding the method for application to other HIRLAM countries and 4. implementation of the new land-cover map in HARMONIE-AROME.

 

[1] Bessardon, G., Gleeson, E., (2019) Using the best available physiography to improve weather forecasts for Ireland. In EMS Annual Meeting.Retrieved fromhttps://presentations.copernicus.org/EMS2019-702_presentation.pdf

[2] Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W.,. . . Køltzow, M. Ø. (2017). The HARMONIE–AROME Model Configurationin the ALADIN–HIRLAM NWP System. Monthly Weather Review, 145(5),1919–1935.https://doi.org/10.1175/mwr-d-16-0417.1

[3] Bertini, F., Brand, O., Carlier, S., Del Bello, U., Drusch, M., Duca, R., Fernandez, V., Ferrario, C., Ferreira, M., Isola, C., Kirschner, V.,Laberinti, P., Lambert, M., Mandorlo, G., Marcos, P., Martimort, P., Moon, S., Oldeman,P., Palomba, M., and Pineiro, J.: Sentinel-2ESA’s Optical High-ResolutionMission for GMES Operational Services, ESA bulletin. Bulletin ASE. Euro-pean Space Agency, SP-1322,2012

[4] Ulmas, P. and Liiv, I. (2020). Segmentation of Satellite Imagery using U-Net Models for Land Cover Classification, pp. 1–11,http://arxiv.org/abs/2003.02899, 2020

[5] Walsh, E., Bessardon, G., Gleeson, E., and Ulmas, P. (2021). Using machine learning to produce a very high-resolution land-cover map for Ireland. Advances in Science and Research, (accepted for publication)

How to cite: Bessardon, G., Gleeson, E., and Walsh, E.: Using machine learning to produce a very high-resolution land-cover map for Ireland and beyond, EMS Annual Meeting 2021, online, 6–10 Sep 2021, EMS2021-53, https://doi.org/10.5194/ems2021-53, 2021.

Displays

Display file

Supporters & sponsors