Environmental restoration has the potential to constrain human-induced land degradation, loss of biodiversity and climate change. Although the practise is increasingly integrated into natural resource and climate mitigation strategies, scientific studies underline that the effectiveness and impact of these restoration projects are currently difficult to monitor and assess. In order to measure the global community’s progress towards the Sustainable Development Goals (SDGs), restoration interventions need to be assessed in a systematic and objective manner. However, the long-term and high-quality data records that are required for this are often lacking in both time and space. Satellite data products that can detect changes in land use, surface temperature and hydrological conditions over time in a consistent manner, can fill this gap.
Over the last few decades, the scientific community has made great efforts to merge different satellites into multi-decadal historical datasets of climate variables. Examples of such long-term climate data records (CDRs) are the soil moisture (from 1978 onwards), land surface temperature (since 1995) and land cover (since 2008) datasets of the European Space Agency Climate Change Initiative (ESA CCI). These consistent datasets, combined with near real-time observations, offer a great opportunity to quantify and monitor the impact of restoration interventions on degraded landscapes. In order to monitor restoration projects affecting areas smaller than the native resolutions of these datasets (up to approximately 25 km), downscaling techniques can be used to increase the spatial level of detail (approximately in the 0.1-1 km range). The resulting monitoring service could help managers of restoration programs and green investment funds to steer decisions and communicate on effectiveness towards their donors.
The satellite datasets were investigated in space and time in relation to the effects of the restoration projects. For each restoration project area, several surface conditions were monitored and compared to those in an unaffected control area to detect and attribute the effects of the restoration program. The present work focuses on several case studies in which the relevance of satellite-based CDRs for the end users’ operational practises related to impact monitoring is assessed in the context of the SDGs 12 (Responsible production and consumption), 13 (Life on land) and 15 (Climate action).
How to cite: van der Vliet, M., de Jeu, R., Schellekens, J., and van der Schalie, R.: A methodology to quantify and monitor the impact of environmental restoration using climate data records from satellite observations, EMS Annual Meeting 2021, online, 6–10 Sep 2021, EMS2021-9, https://doi.org/10.5194/ems2021-9, 2021.