- 1AURORA Technology B.V. (an SSC company) for ESA - European Space Agency, SCO-05: Science Planning Development and Implementation, Quick-Look, Villanueva de la cañada, Madrid (Spain) (julia.delaparra@ext.esa.int)
- 2University of Leicester, Lecturer Space Park Leicester, 92 Corporation Road, Space City, Leicester, LE4 5SP (UK)
- 3ESA/ESAC European Space Astronomy Center, Camino Bajo del Castillo s/n, Urb. Villafranca del Castillo 28692 Villanueva de la Cañada, Madrid (Spain)
- 4ESA/ESTEC European Space Research & Technology Centre, Keplerlaan 1 Postbus 299 2200 AG Noordwijk (The Netherlands)
- 5LATMOS - Laboratoire Atmosphères, Milieux, Observations Spatiales, 3 rue Joliot Curie, Bâtiment Breguet, 91190 Gif-sur-Yvette (France)
- 6Starion Group for ESA - European Space Agency SCO-08: Archives and SPICE Software Development and Operations Work Area, , Villanueva de la cañada, Madrid (Spain)
- 7The Swedish Institute of Space Physics (IRF), Institutet för rymdfysik Box 812 SE-981 28 Kiruna (Sweden)
- 8Graduate School of Science, Tohoku University, Sendai (Japan)
- 9Rheinisches Institut für Umweltforschung, Abteilung Planetenforschung, Cologne (Germany)
- 10Instituto de Astrofísica de Andalucía (IAA-CSIC) Glorieta de la Astronomía, s/n, Granada (Spain)
- 11School of Cosmic Physics, DIAS Dunsink Observatory, Dublin Institute for Advanced Studies, Dublin (Ireland)
- 12ETH Zurich and the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC), Obere Strasse 22 7270 Davos Platz Switzerland
- 13Oddělení kosmické fyziky, Ústav fyziky atmosféry AV ČR Akademie věd ČR Boční II/1401 CZ-14100 Praha 4 (Czech Republic)
- *A full list of authors appears at the end of the abstract
The Mars Magnetosphere ATmosphere Ionosphere and Space-weather SciencE (M-MATISSE) mission is an ESA Medium-class (M7) Phase A candidate. Its twin orbiters—Henri and Marguerite—operate in complementary eccentric trajectories to sample Mars’s magnetosphere–ionosphere–thermosphere (MIT) system under varying solar-wind conditions. Science objectives include (1) mapping MIT coupling, (2) characterizing the radiation environment, and (3) probing ionosphere–surface interactions.
The Science Ground Segment (SGS) at ESAC brings over two decades of mission-operations heritage—supporting Mars Express, ExoMars, BepiColombo, and JUICE, between others—providing end-to-end planning, health monitoring, and quick-look analysis using tools such as MAPPS/EPS-AGM and SPICE. The Mars Science Centre (MSC) adds specialist scientific oversight: defining observation strategies, refining event triggers, and ensuring agile responses to space-weather alerts and transient phenomena.
Long-Term Planning (LTP), conducted at least six months before science operations, converts high-level objectives into:
-
Observation Definitions (ObsDefs): generic templates for instrument modes (continuous, burst, event-driven), pointing and calibration requirements, and inter-instrument coordination.
-
Resource Envelopes: power, data-rate, and thermal budgets for each ObsDef, generated via MAPPS/EPS-AGM to guarantee feasibility under worst-case margins.
-
Preliminary Event Files: time-tagged orbital and geometric triggers—e.g., altitude crossings, solar-longitude markers, alignment windows—that drive ObsDef activation and feed into Medium-Term (MTP) and Short-Term Planning (STP).
By front-loading these products, SGS and MSC ensure that all six instruments (COMPASS, M-EPI, M-MSA, M-SoSpIM, MaCro, M-AC) can seamlessly transition between routine monitoring and rapid-response campaigns, maximizing scientific return within spacecraft constraints.
The LTP poster translates these products into a clear visual planning aid, highlighting representative mission-critical windows and sample plots rather than an exhaustive list. Key elements include:
-
Annotated Eclipse & Occultation Intervals: shadow passages and Earth–line-of-sight losses, showing when instruments switch to safe or calibration modes.
-
Flyby & Alignment Opportunities: selected Phobos/Deimos close approaches and inter-spacecraft proximity events, illustrating windows for radio-science occultations and coordinated measurements.
-
Orbit-Regime Passages: representative sheath, magnetotail, and induced-magnetosphere boundary intervals, derived from SPICE-based analyses, indicating when to switch ObsDefs.
-
Data-Rate Forecasts: sample bitrate-vs.-time curves annotated with solar-longitude markers, guiding allocation of high-data-volume burst modes.
-
Trigger-Timeline Charts: simplified periapsis altitude and geometry plots labeled with example windows (e.g., terminator-ionosphere, dayside vs. nightside passes).
Each figure is annotated with relevant parameters—solar longitude (Ls), solar-zenith-angle ranges, and spacecraft altitudes—to guide science and operations teams in correlating orbital geometry with ObsDef activation. By presenting a curated set of examples, the poster serves as an actionable blueprint, ensuring transparent communication of planning constraints and opportunities, and preparing M-MATISSE to capture both steady-state and transient Martian space-weather phenomena.
Beatriz Sanchez-Cano, François Leblanc, David Andrews, Dan Ohlsson, Yoshifumi Futaana, Ferdinand Plaschke, Johan De Keyser, Hanna Rothkaehl, David Pisa, Frantisek Nemec, Pierre Henri, Štěpán Štverák, Fabrice Colin, Manabu Shimoyama, Daniel Verscharen, Ronan Modolo, Pierre Devoto, Andrew Coates, Nicolas Andre, Raffaella D'Amicis, Lubomir Prech, Quentin Nenon, Julian Thornhill, Richard Hampson, Andrew Cheney, Matthew Jones, Bhargav Narasimha Swamy, Matthieu Berthomier, Valeria Mangano, Frantisek Nemec, Gabriel Guignan, Anna Milillo, Adam Mayall, Vincent Thomas, Lina Hadid, Sae Aizawa, Jim Raines, Gunter Laky, Michael Liemohn, Shoichiro Yokota, Yvon Alata, Gabriel Giono, Martin Pätzold, Tom Andert, Tobias Vorderobermeier, Ed Thiemann, Louise Harra, Silvio Koller, Valeria Büchel, Hiromu Nakagawa, Yuki Harada, Naoki Terada, Justin Deighan, Nick Schneider, Robert J. Lillis, Sonal Jain, Jean-Claude Gérard, Lauriane Soret, Yoichi Yatsu, Philippe Garnier, Vincent Genot, Julien Rouzot, Ivana Kolmasova, Mika Holmberg, Krzysztof Barczynski, Silvia Tellmann, Francisco Gonzalez Galindo, Yuki Nakamura
How to cite: Marín-Yaseli de la Parra, J., Sánchez-Cano, B., Witasse, O., Sánchez-Cabezudo, D., Leblanc, F., Escalante Lopez, A., Andrews, D., Nakamura, Y., Tellmann, S., González Galindo, F., Holmberg, M., Barczynski, K., Kolmašová, I., and Riu, L. and the M-Matisse team: Long-Term Planning Framework and Key Scientific Inputs for the M-MATISSE mission, EPSC-DPS Joint Meeting 2025, Helsinki, Finland, 7–12 Sep 2025, EPSC-DPS2025-298, https://doi.org/10.5194/epsc-dps2025-298, 2025.