- 1Astronomical Institute Bucharest, Fundamental Astronomy, Bucharest, Romania (ioana.boaca@astro.ro)
- 2IMCCE, Observatoire de Paris, 77 av Denfert Rochereau, 75014 Paris Cedex, France
- 3Service Informatique Pythéas (SIP) CNRS – OSU Institut Pythéas – UMS 3470, Marseille, France
- 4Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
1. Introduction
The Fireball Recovery and Inter Planetary Observation Network (FRIPON) network [1] has been monitoring the sky with the use of optical all-sky cameras and radio receivers with the scope of detecting fireball events. The list of all-sky cameras installed so far, as well as the meteor detections can be found online on the FRIPON site [2].
We focus this research on the latest fireballs detected by the Meteorite Orbits Reconstruction by Optical Imaging (MOROI) cameras [3].
2. Methods
The atmospheric trajectory is determined with a method elaborated in order to overcome the distortion caused by the fish-eye lens [4]. The 3D trajectory can be determined for the events detected by multiple cameras [4], [1]. Starting from the luminous trajectory, we can derive the ballistic coefficient α and mass loss parameter β [5], [6]. Those parameters help us to determine whether the meteoroid is likely or not to reach Earth’s surface [7], [8]. The light curve of the meteor allows us to determine the initial and final mass of the meteoroid, as well as the time the meteoroid fragmented. The luminosity and the luminous efficiency are determined using the methods presented in [9].
3. Results
We make graphic representations of the light curves of some of the latest fireball events recorded by the MOROI component of the FRIPON network. We present the luminous trajectory and derive the parameters that result from it. We determine the height and the time of fragmentation for the studied fireball events. We compute the initial and final mass of the analysed meteoroids.
References
[1] Colas, F., Zanda, B., Bouley, S., Jeanne, S., Malgoyre, A., Birlan, M., Blanpain, C., Gattacceca, J., Jorda, L., Lecubin, J., et al. (385 more) FRIPON: a worldwide network to track incoming meteoroids. Astronomy &. Astrophys. 644, A53. 2020.
[2] https://fireball.fripon.org/
[3] Nedelcu, D.A., Birlan, M., Turcu, V., Boaca, I., Badescu, O., Gornea, A., Sonka, A.B., Blagoi, O., Danescu, C., Paraschiv, P. Meteorites Orbits Reconstruction by Optical Imaging (MOROI) Network. Romanian Astronomical Journal 28(1), 57 – 65. 2018.
[4] Jeanne, S., Colas, F., Zanda, B., Birlan, M., Vaubaillon, J., Bouley, S., Vernazza, P., Jorda, L., Gattacceca, J., Rault, J. L., Carbognani, A., Gardiol, D., Lamy, H., Baratoux, D., Blanpain, C., Malgoyre, A., Lecubin, J., Marmo, C., Hewins, P. Calibration of fish-eye lens and error estimation on fireball trajectories: application to the FRIPON network. Astronomy and Astrophysics, 627:A78. 2019.
[5] Gritsevich, M. I., The Pribram, Lost City, Innisfree, and Neuschwanstein falls: An analysis of the atmospheric trajectories. Solar System Research.42, 372–390. 2008.
[6] Gritsevich, M.I. Determination of parameters of meteor bodies based on flight observational data. Advances in Space Research 44(3):323–334. 2009.
[7] Sansom, E.K., Gritsevich, M., Devillepoix, H.A.R., Jansen-Sturgeon, T., Shober, P., Bland, P.A., Towner, M.C., Cupák, M., Howie, R.M., Hartig, B.A.D. Determining Fireball Fates Using the α-β Criterion. Astrophysical Journal 885(2):115. 2019.
[8] Boaca, I., Gritsevich, M., Birlan, M., Nedelcu, A., Boaca, T., Colas, F., Malgoyre, A., Zanda, B., Vernazza, P. Characterization of the fireballs detected by all-sky cameras in Romania. Astrophysical Journal 936(2):150. 2022.
[9] Gritsevich, M. and Koschny, D. Constraining the luminous efficiency of meteors. Icarus 212(2): 877-884. 2011.
How to cite: Boaca, I. L., Colas, F., Malgoyre, A., Zanda, B., and Vernazza, P.: Properties of FRIPON meteoroids deriving from the luminous trajectory, EPSC-DPS Joint Meeting 2025, Helsinki, Finland, 7–12 Sep 2025, EPSC-DPS2025-43, https://doi.org/10.5194/epsc-dps2025-43, 2025.