Oral programme MD2/MTI4/LFI4
MD2/MTI4/LFI4 Machine Learning for Planetary Science in times of increasing data volume and complexity (co-organized) |
Convener: Mario D'Amore | Co-conveners: Stéphane Erard , Jörn Helbert |
Oral programme
/ Wed, 19 Sep, 08:30–10:00
/ Room Neptune
Poster programme
/ Attendance Tue, 18 Sep, 18:15–20:00
/
|
Wednesday, 19 September 2018 Room Neptune |
|
08:30–08:45 |
EPSC2018-679
Automated detection of planetary craters: open and reproducible benchmark platform for the Martian surface Joris Van den Bossche, Alexandre Boucaud, Frédéric Schmidt, Guillaume Lemaitre, Anthony Lagain, Alina Meresescu, and Balazc Kégl |
08:45–09:00 |
EPSC2018-798
Deep Learning-Based Anomaly Detection to Find Changes over the Martian South Pole Alfiah Rizky Diana Putri, Panagiotis Sidiropoulos, and Jan-Peter Muller |
09:00–09:15 |
EPSC2018-829
Detection of early warning signals in paleoclimate data using a genetic time series segmentation algorithm Athanasia Nikolaou, Pedro Antonio Gutiérrez, Antonio Durán Rosal, Francisco Fernández-Navarro, César Hervás-Martínez, and Maria Pérez-Ortiz |
09:15–09:30 |
EPSC2018-844
Advanced Techniques for Signal Search and Automatic Classification of Observational Space Data Tarek Al-Ubaidi, Maxim Khodachenko, Roman Kern, Michael Granitzer, and Stefaan Poedts |
09:30–09:45 |
EPSC2018-1089
Detection of sub-km craters on Mars for equilibrium population statistics Alistair Francis, Jan-Peter Muller, Panagiotis Sidiropoulos, and Divya Persaud |
09:45–10:00 |
EPSC2018-738
Semi-automated surface mapping via unsupervised classification Mercury’S Visible–Near-Infrared reflectance spectra Mario D'Amore, Jörn Helbert, Alessandro Maturilli, and Indhu Varatharajan |