Global 3D modelling of Martian CO2 clouds
- 1LATMOS/IPSL, Sorbonne Université, UVSQ Paris-Saclay, CNRS, Paris, France (christophe.mathe@latmos.ipsl.fr)
- 2Currently at : WPO, Paris, France
- 3DAM-Ile de France (DIF), Bruyères-le-Châtel, France
- 4LMD/IPSL, Sorbonne Université, CNRS, Paris, France
- 5Instituto de Astrofisica de Andalucia, CSIC, Granada, Spain
- 6LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
In the Martian atmosphere, carbon dioxide (CO2) clouds have been revealed by numerous instruments around Mars from the beginning of the XXI century. These observed clouds can be distinguished by two kinds involving different formation processes: those formed during the winter in polar regions located in the troposphere, and those formed during the Martian year at low- and mid-northern latitudes located in the mesosphere (Määattänen et al, 2013). Microphysical processes of formation of theses clouds are still not fully understood. However, modeling studies revealed processes necessary for their formation: the requirement of waves that perturb the atmosphere leading to a temperature below the condensation of CO2 (transient planetary waves for tropospheric clouds (Kuroda et al., 20123), thermal tides (Gonzalez-Galindo et al., 2011) and gravity waves for mesospheric clouds (Spiga et al., 2012)). In the last decade, a state-of-the-art microphysical column (1D) model for CO2 clouds in a Martian atmosphere was developed at Laboratoire Atmosphères, Observations Spatiales (LATMOS) (Listowski et al., 2013, 2014). We use our full microphysical model of CO2 clouds formation to investigate the occurrence of these CO2 clouds by coupling it with the Global Climate Model (GCM) of the Laboratoire de Météorologie Dynamique (LMD) (Forget et al., 1999). Last modeling results on Martian CO2 clouds properties and their impacts on the atmosphere will be presented and be compared to observational data.
How to cite: Mathé, C., Määttänen, A., Audouard, J., Listowski, C., Millour, E., Forget, F., Spiga, A., Bardet, D., Teinturier, L., Falletti, L., Vals, M., González-Galindo, F., and Montmessin, F.: Global 3D modelling of Martian CO2 clouds, Europlanet Science Congress 2021, online, 13–24 Sep 2021, EPSC2021-324, https://doi.org/10.5194/epsc2021-324, 2021.