Europlanet Science Congress 2021
Virtual meeting
13 – 24 September 2021
Europlanet Science Congress 2021
Virtual meeting
13 September – 24 September 2021
EPSC Abstracts
Vol. 15, EPSC2021-686, 2021, updated on 22 Jul 2021
https://doi.org/10.5194/epsc2021-686
European Planetary Science Congress 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Update on the SBNAF Infrared Database

Róbert Szakáts1, Csaba Kiss1, Thomas Müller2, Gábor Marton1, Victor Alí-Lagoa2, Anikó Farkas-Takács1, and Evelin Bányai1
Róbert Szakáts et al.
  • 1Research Centre for Astronomy and Earth Sciences, Eötvös Loránd Research Network (ELKH), Konkoly Observatory, Budapest, Hungary (szakats.robert@csfk.org)
  • 2MPE, Garching, Germany

One of the goals of the Small Bodies: Near and Far (SBNAF) H2020 project was to create an easy-to-use database for thermal infrared observations of small bodies. We collected published thermal IR measurements for our selected samples of Solar System targets including data from large missions (e.g. catalogues based on Akari, IRAS and WISE observations) and also data from smaller scale and individual reductions (e.g. the Herschel Space Observatory measurements of near-Earth and main belt asteroids). The primary goal of this database is to help scientists working in the field of modeling the thermal emission of small bodies. However, the database has the option to include more data of Solar System small bodies which have been observed at thermal IR wavelengths from space or with ground-based instruments. The database is online and accessible since March 2019, see the details in Szakáts et al. (2020).
Our database was used, e.g. to help determine the shape and spin properties of (208) Lacrimosa asteroid in the Koronis family, (Vokrouhlický et al., 2021), to model the thermophysical state of two Hilda asteroids (1162) Larissa and (1911) Schubart, (Chavez et al., 2021) and to model the thermal emission of large main belt asteroids (Ali-Lagoa et al., 2020).

In a recent update we added 324 new flux densities for 23 resonant trans-Neptunian and scattered disk objects to the database from Farkas-Takács et al. 2020, and in total we have now 170461 records. For the currently available data, its sources and the distribution of data from observatories and missions see Table 1.


Table 1. List  of  observatories/missions,  observatory  codes,  instruments,  filters,  possible  observing  modes,and the number of measurements with a specific instrument, in the present version of the Infrared Database. Except for WISE, there are no available positions for the low-Earth orbit missions, so they are referred to as geocentric (JPL code ‘500@399’)

In an upcoming update we are planning to extend the database with WISE W2 data, Uranus and Neptune satellite data, with flux densities from Herschel serendipitous asteroid observations, and disk-integrated thermal data of the Moon (Müller et al., 2021).
The WISE W2 data will bring shorter wavelength flux densities to the database for selected asteroids. During the processing special attention will be given to those small bodies, mainly NEAs, for which the reflected light can cause discrepancies when calculating the colour correction factor. A proper warning will be given in the public database for such objects after the update.
With the Herschel serendipitous asteroid observations we will expand the number of flux densities by around 600 records.

How to cite: Szakáts, R., Kiss, C., Müller, T., Marton, G., Alí-Lagoa, V., Farkas-Takács, A., and Bányai, E.: Update on the SBNAF Infrared Database, European Planetary Science Congress 2021, online, 13–24 Sep 2021, EPSC2021-686, https://doi.org/10.5194/epsc2021-686, 2021.