Europlanet Science Congress 2021
Virtual meeting
13 – 24 September 2021
Europlanet Science Congress 2021
Virtual meeting
13 September – 24 September 2021


Tools, Data Analytics and Geomapping for Solar and Planetary Sciences

Modern space missions, ground telescopes and modeling facilities are producing huge amount of data. A new era of data distribution and access procedures is now starting with interoperable infrastructures and big data technologies. Long term archives exist for telescopic and space-borne observations but high-level functions need to be setup on top of theses repositories to make Solar and Planetary Science data more accessible and to favor interoperability. Results of simulations and reference laboratory data also need to be integrated to support and interpret the observations.

The Virtual Observatory (VO) standards developed in Astronomy may be adapted in the field of Planetary Science to develop interoperability, including automated workflows to process related data from different sources. Other communities have developed their own standards (GIS for surfaces, SPASE for space plasma, PDS4 for planetary mission archives…) and an effort to make them interoperable is starting.

Planetary Science Informatics and Data Analytics (PSIDA) are also offering new ways to exploit the science out of planetary data through modern techniques such as: data exploitation and collaboration platforms, visualisation and analysis applications, artificial intelligence and machine learning, data fusion and integration supported by new big data architecture and management infrastructure, potentially being hosted by cloud and scalable computing.

We call for contributions presenting progresses in the fields of Solar and Planetary science databases, tools and data analytics. We encourage contributors to focus on science use cases and on international standard implementation, such as those proposed by Europlanet/VESPA (Virtual European Solar and Planetary Access) the IVOA (International Virtual Observatory Alliance), the OGC (Open Geospatial Consortium), the IPDA (International Planetary Data Alliance) or the IHDEA (International Heliophysics Data Environment Alliance), as well as applications linked to the EOSC (European Open Science Cloud) infrastructure.

Convener: Baptiste Cecconi | Co-conveners: Sébastien Besse, Andrea Nass

Session assets

Discussion on Slack

Oral and Poster presentations and abstracts

Chairperson: Baptiste Cecconi
ESA’s Planetary Science Archive efforts to support the scientific community
Sébastien Besse, Isa Barbarisi, Guido de Marchi, Bruno Merin, Javier Arenas, Mark Bentley, Ruben Docasal, Daniela Coia, Emmanuel Grotheer, David Heather, Tanya Lim, Santa Martinez, Angel Montero, Jose Osinde, Fran Raga, Jorge Ruano, and Jaime Saiz
Alfredo Escalante Lopez, Ricardo Vallés Blanco, and Christophe Arviset

Introduction: SPICE is an information system the purpose of which is to provide scientists the observation geometry needed to plan scientific observations and to analyze the data returned from those observations. SPICE is comprised of a suite of data files, usually called kernels, and software -mostly subroutines [1]. The user incorporates a few of the subroutines into his/her own program that is built to read SPICE data and compute needed geometry parameters for whatever task is at hand. Some examples of geometry parameters typically computed are range or altitude, latitude and longitude, illuminations angles (phase, incidence and emission), instrument pointing and field-of-view calculations, reference frame transformations, and coordinate system conversions. SPICE is also very adept at time conversions.

The ESA SPICE Service: The ESA SPICE Service (ESS) leads the SPICE operations for ESA missions. The group generates the SPICE Kernel Datasets (SKDs) for missions in development (Hera, ExoMars 2022 and JUICE), missions in operations (Mars Express, ExoMars 2016, and BepiColombo) and legacy missions (Venus Express, Rosetta and SMART- 1). ESS is also responsible for the generation of SPICE Kernels for Solar Orbiter. The generation of SKDs includes the development and operation of software to convert ESA orbit, attitude, payload telemetry and spacecraft clock correlation data into the corresponding SPICE format. ESS also provides consultancy and support to the Science Ground Segments of the planetary missions, the Instrument Teams and the science community. The access point for the ESS activities, data and latest news can be found at the following site ESS works in partnership with NAIF.

Providing the best data: The quality of the data contained on a SKD is paramount. Bad SPICE data can lead to the computation of wrong geometric quantities which can jeopardize science results. ESS, in collaboration with NAIF, is focused on providing the best SKDs possible. Kernels can be classified as Setup Kernels (FK kernels defining Reference Frames of a given S/C, IK kernels describing a given sensor field- of-view and other characteristics, PCK or Planetary Constants Kernels, and LSK or Leapseconds Kernels) and Time-varying Kernels (SPK and CK kernels providing Trajectory and Attitude data, SCLK providing Time Correlation Data, and MK or Meta- kernel). Setup kernels are iterated with the different agents involved in the determination of the data contained in those kernels (Instrument Teams, Science Ground Segments, etc.) while Time-varying kernels are automatically generated by the ESS SPICE Operational Pipeline to produce the Operational kernels that are used in the day-to-day work of the missions in operations (planning and data analysis). These Time-varying kernels are peer-reviewed a posteriori for the consolidation of SKDs that are archived in the PSA and PDS.

Status of the Kernel Datasets: The current status and latest developments of the SKDs for the before mentioned missions will be described in this contribution. In general, the ESS is reviewing the legacy and operational datasets and developing the ones for future missions. DOIs have been incorporated to both operational and archived datasets and shall be used for citing ESA missions SKDs.

SPICE Kernels Archived in the PSA. ESS is also responsible for the generation of PDS3 and PDS4 formatted SPICE Archives that are published by the PSA. ESS in close collaboration with NAIF, peer- reviews the operational kernels for the PSA [2] in order to publish being compliant with the Planetary Data System (PDS) standards and uses them in the processes that require geometry computations.

Extended Services: ESS offers other services beyond the generation and maintenance of SPICE Kernel Datasets, such as instances and configuration for WebGeocalc and Cosmographia for the ESA missions.

SPICE-Enhanced Cosmographia. NAIF offers for public use a SPICE-enhanced version of the open source visualization tool named Cosmographia. This is an interactive tool devoted to 3D visualizations of celestial bodies ephemerides and shape models, spacecraft trajectories and orientations, movable parts position, and instrument field-of-views and footprints. ESS provides the framework and configuration required to load the ESA missions in Cosmographia, this contribution will demonstrate its usage for the ESA Planetary missions [3].

WebGeocalc. The WebGeocalc tool (WGC) provides a web-based graphical user interface to many of the observation geometry computations available from the SPICE APIs. A WGC user can perform SPICE computations without the need to write a program; just a web browser is required. WGC is provided to the ESS by NAIF. This contribution will outline the WGC instances for ESA missions [3].

References: [1] Acton C. (1996) Planet. And Space Sci., 44, 65-70. [2] Bessel, S. et al., (2017) Planet. And Space Sci. [3] Acton, C. et al., (2017) Planet. And Space Sci.

How to cite: Escalante Lopez, A., Vallés Blanco, R., and Arviset, C.: Updates on SPICE for ESA Missions, Europlanet Science Congress 2021, online, 13–24 Sep 2021, EPSC2021-125,, 2021.

Carlos Muñiz and Alejandro Cardesin

The Mission Analysis and Payload Planning System (MAPPS) is a multi-mission software system developed during the last 20 years to support the science operations planning for the ESA planetary missions.

Developed initially only to visualise the coverage of MEX experiments onto the Martian surface. Progressively, the tool has been extended to provide planning capabilities and to support other missions operationally. In the past: SMART-1, Venus Express and Rosetta. Today and in the coming years: Mars Express, ExoMars2016, BepiColombo, SolarOrbiter, JUICE and EnVision.

The tool main objective is to assist the Science Ground Segment Team (SGS), located at the European Space Astronomy Centre (ESAC) near Madrid, with the complex process of instrument operations scheduling, simulation and validation. The tool receives as inputs the observations requests from the instrument teams, which are merged into a plan that the science operations engineers can run. The instruments are simulated and modelled extensively, allowing to find any possible conflict or constraint violation in the plan. The result of a validated plan is the generation of a multi-instrument operational timeline that is sent to the MOC for uplink to the spacecraft.                                                                  

Here we present the latest MAPPS features that help the SGS Teams in ESA to achieve their goal of planning scientific operations in an efficient and optimised way.


How to cite: Muñiz, C. and Cardesin, A.: MAPPS: Science Planning and Simulation Tool for ESA Planetary Missions, Europlanet Science Congress 2021, online, 13–24 Sep 2021, EPSC2021-381,, 2021.

Stéphane Erard and the VESPA team

VESPA (Virtual European Solar and Planetary Access) has been focusing for nearly 10 years on adapting Virtual Observatory (VO) techniques to handle Planetary Science data [1] [2]. The objective of this activity is to build a contributive data distribution system where data services are located and maintained in research institutes, as well as in space agencies and observatories. This system is responsive to the new paradigm of Open Science and FAIR access to the data.

During the previous Europlanet-2020 program, VESPA has defined an architecture adapted from the astronomy VO, incorporating concepts and standards from other areas (Earth observation, Heliophysics, etc). The basic system uses the VO infrastructure: data services are installed in any location but are declared in a system of harvested registries with identifiers, end-point (URL), mention of supported access protocols, and rough description of content. Such services are interoperable via clients and tools, which also provide visualization and analysis functions.

The activity in Europlanet-2024 focuses on expanding this environment, enforcing sustainability, and opening new possibilities to improve data processing – such as workflows, cloud-based computation, and readiness for exploitation through Machine Learning techniques.

Data access. VESPA has defined a specific access protocol called EPN-TAP which at the time of writing is a Working Draft of the Internal Virtual Observatory Alliance (IVOA), and expected to become a Recommendation in the coming months [3]. The EPN-TAP metadata system provides uniform description of datasets not only to access data in a VO context, but also for research projects. EPN-TAP is compliant with the general TAP protocol, allowing usage of existing VO tools and communication protocols with data services pertaining to Solar System studies. Some VO tools (TOPCAT, Aladin, CASSIS) were also adapted to improve the handling of such data.

The VESPA portal, intended as a discovery tool to browse the EPN-TAP services, is under study to improve the user experience. ElasticSearch capacities are being implemented, and all interface mechanisms are being evaluated. Other, more specific access modes (via script, web services, VO tools, etc) are also being reviewed.

Data services. There are currently 55 EPN-TAP data services published in the IVOA registry, and about 20 in development phase. Most of them are implemented on DaCHS, a VO data server provided by Heidelberg University. A major upgrade of DaCHS published last year implements recent evolutions of IVOA standards. Existing data services are currently reviewed for compliance, and upgraded to benefit from the latest developments. In many cases, this is also an occasion to extend their content with new data. This upgrade also addresses low-level technical aspects, e.g. related to declaration in the IVOA registry.

Larger data infrastructures with EPN-TAP interface (AMDA, SSHADE, PVOL) also continue to develop their content and capacities, e.g. band lists have been implemented in SSHADE this year.

Sustainability. This major update relies on the VESPA hubs activity: definition files of all services are stored in a unique gitlab for preservation and maintenance by several VESPA teams. Authentication is granted by GÉANT/eduTEAMS. This is a simple and efficient way to share the technical expertise among services and teams, and to improve sustainability.

New environments. VESPA-cloud was a project supported by EOSC-Hub, through its 2nd Early Adopter Program (2020-21). It was an assessment of the deployment of EPN-TAP services on EOSC (the recent European Open Science Cloud) inside Virtual Machines or Docker containers, from the same gitlab installation used to preserve the services. The assessment was successful and opens up new solutions and opportunities for future VESPA service implementations. It will provide a workaround to services temporary unavailability, for performing cloud-based computation on data services, and a solution for data providers who are not able or not willing to host a VESPA server for a long period of time.

New services. Implementation of new services has been going on with internal projects. External ones will restart with an on-line implementation workshop before the end of the year. A VizieR EPN-TAP service will provide access to the data content of articles related to the Solar System and exoplanets (hopefully ready at the time of the conference). An interface with space agency archives will make use of the recent PDS4 dictionary for EPN-TAP (in addition to the existing EPN-TAP interface on ESA’s PSA).

Discussions have started with other WP producing data in Europlanet-2024 to start distributing their results using the VESPA infrastructure: other VAs (SPIDER, GMap, ML), NA2 (telescope network), and TAs (lab experiments and field studies). VESPA is of course also available to distribute data from other H2020 programmes in the field.

Prospects. Detailed examples of recent VESPA developments are provided in this session and related ones. The focus will shift again next year to new data services, with the finalization of several projects, in particular related to the Moon, Mercury, and exoplanets. A workflow platform will also be connected to perform run-on-demand (the OPUS system also used by the ESCAPE H2020 programme) and cloud-based activity will expand.


The Europlanet-2024 Research Infrastructure project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No 871149.

 [1] Erard et al 2018, Planet. Space Sci. 150, 65-85. 10.1016/j.pss.2017.05.013. ArXiv 1705.09727  

 [2] Erard et al. 2020, Data Science Journal 19, 22. doi: 10.5334/dsj-2020-022.

 [3] (still open for comments)

How to cite: Erard, S. and the VESPA team: Virtual European Solar & Planetary Access (VESPA) 
2021: consolidation, Europlanet Science Congress 2021, online, 13–24 Sep 2021, EPSC2021-506,, 2021.

Chloé Azria, Anni Määttänen, Ehouarn Millour, Frédéric Schmidt, François Andrieu, Erard Stéphane, Cecconi Baptiste, and Pierre Le Sidaner


The development of VESPA in the Europlanet 2024 program encompasses the improvement of Virtual Observatory (VO) services to enlarge and update its content.

VESPA services use the EPN-TAP protocol defined for Planetary Science and Heliophysics. As a restriction of the more general TAP protocol, such services benefit from TAP-compliant tools and protocols previously defined in the VO [1]. 

The development of three Planetary services will be described here. The creation of a service providing outputs of a model of topography of exoplanets called EXOTOPO, and the update of two services providing profiles of various parameters of Mars atmosphere : SPICAM data and MCD simulations. These services are provided with user manuals linked in their description to explain the main search criteria that can be used. The three services are implemented on DaCHS, a commonly used TAP server provided by Heidelberg University.



The new service EXOTOPO gives access to simulation results based on a statistical model of  topographies of (exo)planet surfaces (3D visualisator : [2]). The model is based on 3 parameters (H : degree of smoothness, C1 : degree of intermittency, alpha : degree of multifractality), see Landais et. al 2018 [3] for more information. A new data set was generated to provide a larger range of parameter variation [4]. For each combination of parameters (H, C1, alpha and the Random Seed identifier), 5 types of data outputs are provided (see Fig. 1): An elevation map ; An earth-like colorized texture with continents and oceans, with and without hill-shading ; A gray texture map, small body-like, with and without hill-shading ; additionally, two spherical plots of altitude in 3D with the hill-shaded textures are provided as thumbnails of elevation maps.