Europlanet Science Congress 2022
Palacio de Congresos de Granada, Spain
18 – 23 September 2022
Europlanet Science Congress 2022
Palacio de Congresos de Granada, Spain
18 September – 23 September 2022
EPSC Abstracts
Vol. 16, EPSC2022-1152, 2022, updated on 23 Sep 2022
https://doi.org/10.5194/epsc2022-1152
Europlanet Science Congress 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Scratching beneath the surface of a Mars analogue site: Microbial stratification in Laguna de Alumbrea

Ben Tatton1, Michael C Macey1, Fernando Gomez2, Susanne P Schwenzer1, Mario Toubes-Rodrigo1, and Karen Olsson-Francis1
Ben Tatton et al.
  • 1The Open University, AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, United Kingdom of Great Britain – England, Scotland, Wales (ben.tatton@open.ac.uk)
  • 2CICTERRA-Centro de Investigaciones en Ciencias de la Tierra, CONICET-UNC, Córdoba, Argentina

Abstract: This work describes a new high-altitude Mars analogue site and the stratification of microbial communities with depth within lake sediments. Understanding how microbial communities at this site change with depth may give insights into the type of metabolism that may have dominated paleolake environments on early Mars and the resulting biosignatures.

Introduction: High-Altitude Andean lakes (HAALs) are poly-extreme environments which mimic many of the physiochemical conditions present on Mars during the Noachian (4.1 – 3.7 Gya) and Hesperian Mars (3.7 – 3.0 Gya)1,2. This combination of physiochemical conditions has led to HAALs being identified as natural laboratories for studying life under conditions analogous to early Earth and early Mars1,3. Present-day Mars is a cold, hyper-arid planet with surface conditions incapable of supporting liquid water in most locations. However, orbiter, rover, and lander missions have uncovered extensive hydrated mineral deposits and widespread geomorphological evidence of long-lasting fluvial and lacustrine environments, which dried up in the Hesperian4. Following the collapse of the martian magnetosphere, conditions on the surface would have become increasingly inclement. However, lake sediments may have offered refuge against desiccation, intense ultra-violet radiation (UV), large diurnal temperature fluctuations, and reduced atmospheric pressures with biosignatures potentially being preserved following lithificaytion5. For this reason, the study of analogue environments and the nascent microbiome is crucial in informing targets for biosignature detection. Despite their relevance to early Hesperian Mars, the lakes of the Argentinian Puna (a plateau between 3000 – 6000 m) remain understudied6. Here we present the geochemistry and microbial communities associated with the lake water and sediments from the previously undescribed Laguna de Antofagasta (LDA; Catamarca, Argentina, -26.111148, -67.407338) were analysed. We demonstrated that these communities change with depth, which will aid in identifying relevant metabolisms and biosignatures to inform current and future life-detection missions. 

Methods: Lake water and cores (5 x 30 cm) were collected from five sample points located around the perimeter of LDA in April 2022 (Figure 1). For each microbial core, a sister core was collected for geochemical analyses (pH, temperature, and dissolved oxygen (DO) readings) to avoid contamination of microbial cores. Each core was divided evenly into an upper, middle, and bottom section before being stored under anaerobic conditions. The lake water samples were collected and filtered using 0.22 µm Sterivex filters, and all samples were transported to The Open University, UK at 4˚C. Pore and lake water were analysed using ICP-OES and IC analysis to collect bulk chemical and ionic concentrations. DNA was extracted using the XS buffer method7, and 16S rRNA gene sequencing was performed to characterise the microbial communities. In addition, Postgate B media was used during culture-dependent analysis to isolate sulphate-reducing bacteria (SRB).