Some technical challenges for parametrized one-dimensional thermal evolution models of Mercury
- Royal Observatory of Belgium, Planetary Sciences, Belgium
One-dimensional parametrized planetary thermal evolution models are often used for computation of many thermal evolution schemes of a planet, as convenient alternative for computationally expensive thermal evolution simulations that solve complex three-dimensional processes, such as convective motions. Such one-dimensional thermal evolution models for terrestrial objects are motivated mainly with a silicate-dominated object in mind (Venus, Earth, the Moon, and Mars), with a small relative size of the metallic core. Because a correspondingly thick mantle commonly remains convective for a long period of time, parametrized mantle evolution models focus primarily on capturing the convective state of the thick mantle. Additionally, the thermal profile of the metallic core is commonly simplified by an adiabat, or the core is treated as a thermal load situated below the mantle. For a small core, this assumption goes without loss of much accuracy even if the core may actually end up (partly) conductive. Because the assumptions of a convective mantle and fully adiabatic or small core seem to be inappropriate for Mercury, we are developing a parametrized thermal evolution model for Mercury with a mantle and core that turns into a (partially) conductive state. The model development takes strict conservation of energy as starting point, which is an additional minor improvement relative to most existing parametrized thermal evolution models. I will present an outline of the developed model, and discuss some challenges for future work.
How to cite: Knibbe, J.: Some technical challenges for parametrized one-dimensional thermal evolution models of Mercury, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-1250, https://doi.org/10.5194/epsc2022-1250, 2022.