Europlanet Science Congress 2022
Palacio de Congresos de Granada, Spain
18 – 23 September 2022
Europlanet Science Congress 2022
Palacio de Congresos de Granada, Spain
18 September – 23 September 2022


Mercury Science and Exploration

Understanding the formation, evolution, composition, interior structure, and environment of Mercury is of primary interest to better understand Mercury and the role this terrestrial planet plays in the evolution of our solar system.

NASA’s MESSENGER spacecraft provided many insights and surprising results regarding these goals. MESSENGER data are still under analysis and will continue to provide many important contributions to Mercury science.

However, MESSENGER also raised many questions that are still open and will be addressed by the new joint ESA/JAXA mission to Mercury, BepiColombo, which was successfully launched in October 2018. In October 2021, the first of six flybys of Mercury took place (second flyby in June 2022).

This session welcomes contributions addressing the planet’s geology, surface composition, geodesy, interior structure, exosphere, magnetosphere, gravity, and magnetic fields, based on modeling, laboratory experiments, and observations (ground-based, remote-sensing and in situ). The first analyses of BepiColombo's flyby data from Mercury are welcome. Finally, contributions of concepts of future missions to Mercury are encouraged.

Co-organized by MITM
Convener: Jack Wright | Co-conveners: Joe Zender, Johannes Benkhoff, Go Murakami, Lina Hadid, Noah Jäggi, Beatriz Sanchez-Cano, Willi Exner, Joana S. Oliveira, Alice Lucchetti, Anna Milillo, Valeria Mangano
| Mon, 19 Sep, 10:00–11:30 (CEST), 15:30–18:30 (CEST)|Room Machado
| Attendance Mon, 19 Sep, 18:45–20:15 (CEST)|Poster area Level 1

Orals: Mon, 19 Sep | Room Machado

Chairpersons: Joana S. Oliveira, Joe Zender
Johannes Benkhoff and Go Murakami

BepiColombo has finished more than 50% of its about seven year-long cruise-phase. Launched on 20 October 2018 from the European spaceport Kourou in French Guyana it has successfully performed several flybys ( at Earth, twice at Venus and Mercury). BepiColombo with its state of the art and very comprehensive payload will perform measurements to increase our knowledge on the fundamental questions about Mercury’s evolution, composition, interior, magnetosphere, and exosphere. BepiColombo consists of two orbiters, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (Mio) and is a joint project between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA).

Since the two spacecraft are in a stacked configuration during the cruise only some of the instruments will perform scientific observations. Mio and MPO are connected to each on-top of the Mercury Transfer Module (MTM). The MTM contains a solar electric propulsion engine and will bring the two spacecraft to Mercury. In late 2025, this ‘stack’ configuration is abandoned, the MTM will be jettisoned, and the individual elements spacecraft are brought into their final Mercury orbit: 480x1500km for MPO, and 590x11640km for Mio.  

Despite the reduced instrument availability, scientific and engineering operations has been scheduled during the cruise phase, especially during the swing-bys. A status of the mission and instruments, science operations plan during cruise, and first results of measurements taken in the first four years since launch will be given.

How to cite: Benkhoff, J. and Murakami, G.: BepiColombo on its cruise to Mercury – first results and mission status , Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-78,, 2022.

Umberto De Filippis, Carlo Lefevre, David Lucchesi, Marco Lucente, Carmelo Magnafico, Roberto Peron, and Francesco Santoli

ISA (Italian Spring Accelerometer) is a scientific payload of the Mercury Planetary Orbiter (MPO) module of the ESA/JAXA BepiColombo mission to planet Mercury and it is the first high-sensitivity accelerometer on-board an interplanetary spacecraft. It will be one of the key instruments to perform Radio Science Experiments during the orbital phase. The instrument is sensitive to any acceleration, greater than 10-8 ms-2Hz-1/2, perturbing the free fall of the spacecraft in the overall gravity field. The main goal of ISA is indeed to measure the so-called Non Gravitational Perturbations (NGP) allowing to reconstruct, a posteriori, the motion of the spacecraft on a geodesic of spacetime. During the first Mercury flyby, performed in October 2021, the spacecraft approached the target planet reaching an altitude above its surface of only 200 km. Thanks to this very low altitude and to the ISA on-board position in cruise configuration, far away from the center of mass of the overall composite spacecraft, the accelerometer has been able to clearly detect the gravity gradient accelerations. Indeed, this is the first direct measurement of the gravity gradient acceleration induced on a spacecraft by the gravity field of a celestial object different from the Earth. Near the closest approach to the planet, the spacecraft entered in eclipse, losing the effect of the solar radiation pressure acting on its surfaces exposed to the Sun. As a consequence, a sudden change of the acceleration was clearly detected by the accelerometer; the measured signal has a magnitude aligned with the expectations, computed considering optical coefficients and spacecraft attitude. In June 2022, BepiColombo will carry out a second flyby that will be very similar, in terms of altitude, attitude and B-plane coordinates, to the first one, representing an almost unique opportunity to compare two similar measurements.

How to cite: De Filippis, U., Lefevre, C., Lucchesi, D., Lucente, M., Magnafico, C., Peron, R., and Santoli, F.: First NGP measurements at Mercury, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-1260, 2022.

Giovanni Munaretto, Gabriele Cremonese, Emanuele Simioni, Alice Lucchetti, Maurizio Pajola, and Matteo Massironi

Introduction: The physical properties of a particulate surface, like roughness, grain size, shape and transparency affect how it reflects the incoming light. This concept is used in planetary photometry to infer the surface properties of a celestial object from multiple observations taken from different directions and solar illumination (Hapke et al. 2012). Models linking the observed surface brightness with parameters related to physical properties of the surface have been established. The estimation of such parameters is referred as photometric modelling (Domingue et al., 2016). On Mercury, this technique has been employed to construct monochrome and color global mosaics, but it was never applied to investigate local surface features (Domingue et al., 2016). Therefore, the photometric modelling of Mercury’s surface features represents a novel and useful tool to investigate their nature. In addition, the identification of high-performance photometric models of any given surface material over multiple wavelengths enables to accurately predict the amount of reflected sunlight that will be observed through remote cameras and spectrometers.

In this abstract, we first describe our modelling approach, discuss its improvement with respect to current available photometric models of Mercury, and present a few science cases in which it has been applied. Then, we will also show how this methodology is being applied for the calibration of SIMBIO-SYS observations that will be acquired during the Mercury Orbit Insertion (MOI) phase of the mission.

Methodology: we first analyze the Tyagaraja and Canova craters hollows (i.e., tens meters to several km-sized shallow, irregular, flat‐floored depressions characterized by bright interiors and haloes, Blewett et al., 2011), which are covered by multiple overlapping 8 filter MDIS/WAC (Hawkins et al., 2007) images with resolution higher than 665 m/px and phase angles from 30° to > 100°.  Over this region, we construct a latitude-longitude sampling grid with 665 m spacing. For each point we retrieve the surface reflectance and the solar illumination and observation angles using the 3D information of the global USGS DTM and the spacecraft and Sun position information within the observation SPICE kernels. This dataset is fitted with the Hapke and Kaasalainen-Shkuratov photometric models and estimates of their parameter are obtained for each point of the grid (see for example Fig 1C).


Modelling performance: Our results suggest that photometric models derived from the inversion of multiple, overlapping observations are more accurate, especially for bright targets, rather than global photometric models of Mercury (Fig 1A,B). Overall, we estimate a modelling accuracy of better than 10% at 3σ, comparable with the radiometric noise level of the observations.

Hollows results: Our results suggest that hollows are more backscattering than the floor of the crater in which they form. This is consistent with hollows being made of a material rich in holes and/or vescicles, in agreement with a formation by devolatilization. In addition, we find that they are smoother than the crater floor, consistently with the emplacement of a fine particles halo during hollow growth.