Europlanet Science Congress 2022
Palacio de Congresos de Granada, Spain
18 – 23 September 2022
Europlanet Science Congress 2022
Palacio de Congresos de Granada, Spain
18 September – 23 September 2022
EPSC Abstracts
Vol. 16, EPSC2022-275, 2022
https://doi.org/10.5194/epsc2022-275
Europlanet Science Congress 2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Perchlorate-induced proteomic stress responses of Debaryomyces hansenii and their consequences for the habitability of Martian brines

Jacob Heinz1, Joerg Doellinger2, Deborah Maus3, Andy Schneider2, Peter Lasch2, Hans-Peter Grossart4,5, and Dirk Schulze-Makuch1,4,6
Jacob Heinz et al.
  • 1Center for Astronomy and Astrophysics, RG Astrobiology, Technische Universität Berlin, Berlin, Germany
  • 2Robert Koch-Institute (RKI), Proteomics and Spectroscopy (ZBS6), Berlin, Germany
  • 3Robert Koch-Institute (RKI), Metabolism of Microbial Pathogens (NG2), Berlin, Germany
  • 4Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
  • 5Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
  • 6GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany

Introduction: While perchlorate (ClO4-) salts occur only occasionally in natural environments on Earth, they seem to be widely distributed on Mars [1]. The hygroscopicity of these salts and their potential to reduce the freezing point of pure water might enable the provision of liquid water by the formation of temporarily stable liquid brines close to the surface of Mars [2]. However, low water activities and the enhanced chaotropicity (i.e. the potential of biomacromolecule destabilization) of perchlorate pose a huge challenge for putative microorganisms in these brines [3]. Here we present the results of the first study investigating perchlorate-specific stress responses (i.e., with a significant distinction compared to general salt stress) of a halotolerant model organism, Debaryomyces hansenii, with an untargeted proteomic approach to provide fundamental understanding of the required cellular adaptation mechanisms for life in perchlorate-rich habitats on Mars.

Methodology: Growth experiments with D. hansenii were conducted in liquid growth media DMSZ #90 containing either NaCl, NaClO4 or no additional salt. Water activities (aw) of the growth media were measured with the Rotronics® ‘HC2-AW-USB’ aw meter. Proteomics analyses of the grown cultures were conducted using the SPEED (Sample Preparation by Easy Extraction and Digestion) protocol described previously [4].

Results: While D. hansenii grew at NaCl concentrations of up to 4.0 mol/kg (aw = 0.854), growth in perchlorate-containing media was obtained only at NaClO4 concentrations up to 2.5 mol/kg (aw = 0.926) [5]. The proteomics data [6] indicated that the chaotropicity of perchlorate is likely to be the major factor of the reduced tolerance of D. hansenii towards NaClO4 compared to NaCl, while the perchlorate´s oxidative properties seem to play only a subordinated role in growth limitation. This is consistent with previous studies finding a high kinetic barrier for the reduction reaction of the perchlorate anion in solution [7].

The chaotropic activity of perchlorate leads to a destabilization of biomacromolecules such as proteins. Consequently, cells of D. hansenii showed upregulation of metabolic pathways involved in glycan biosynthesis, protein glycosylation and the requisite protein transport mechanisms when exposed to perchlorate stress, presumably in order to increase protein stability. Furthermore, the biosynthesis and reorganization of cell wall components, e.g. chitin, was significantly upregulated compared to NaCl-induced stress, indicating the necessity of stabilizing the cell envelope. In addition to these perchlorate-specific stress responses, many other metabolic pathways were expressed similarly in NaCl and NaClO4-stressed cells, such as signaling pathways, elevated energy metabolism, or osmolyte biosynthesis.

Conclusions: To counteract perchlorate-induced chaotropic stresses, cells initiate metabolic pathways that stabilize biomacromolecules and cell envelopes. We hypothesize that these stress responses would also be relevant for putative Martian microorganisms, which likely developed chaotropic defense strategies in order to counteract the relatively high perchlorate concentrations in the Martian regolith. Chaotropic-specific adaptations might be the evolutionary development of stabilized confirmations of biomacromolecules in which structures with covalent bounds and cross-linking are favored over looser electrostatic interactions, hydrogen bonding or hydrophobic effects. Additionally, cell components susceptible to chaotropic stress might be stabilized by the attachment of polymers similar to stabilization effects via protein glycosylation as observed in our experiments. Characteristic biomarkers might result from these adaptions which will likely prompt further investigations.

References:

[1] Clark, B.C. and Kounaves, S.P. (2016) IJA, 15, 311–318; doi: 10.1017/S1473550415000385.

[2] Martín-Torres, F.J., et al. (2015) Nat. Geosci. 8, 357–361; doi: 10.1038/ngeo2412.

[3] Hallsworth, et al. (2007) Environ. Microbiol., 9, 801–813; doi: 10.1111/j.1462-2920.2006.01212.x.

[4] Doellinger, J., et al. (2020) MCP, 19, 209–222; doi: 10.1074/mcp.TIR119.001616.

[5] Heinz, J., et al. (2021) Life, 11; doi: 10.3390/life11111194.

[6] Heinz, J., et al. (2022) preprint at biorxiv.org; doi: 10.1101/2022.05.02.490276.

[7] Urbansky, E.T. (1998) Bioremediat. J., 2, 81–95; doi: 10.1080/10889869891214231.

 

How to cite: Heinz, J., Doellinger, J., Maus, D., Schneider, A., Lasch, P., Grossart, H.-P., and Schulze-Makuch, D.: Perchlorate-induced proteomic stress responses of Debaryomyces hansenii and their consequences for the habitability of Martian brines, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-275, https://doi.org/10.5194/epsc2022-275, 2022.

Discussion

We are sorry, but the discussion is only available for users who registered for the conference. Thank you.