Europlanet Science Congress 2022
Palacio de Congresos de Granada, Spain
18 – 23 September 2022
Europlanet Science Congress 2022
Palacio de Congresos de Granada, Spain
18 September – 23 September 2022
EPSC Abstracts
Vol. 16, EPSC2022-59, 2022, updated on 01 Mar 2024
https://doi.org/10.5194/epsc2022-59
Europlanet Science Congress 2022
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Clues to the subsurface fault pattern of circum-Tharsis wrinkle ridges

Oguzcan Karagoz, Thomas Kenkmann, and Gerwin Wulf
Oguzcan Karagoz et al.
  • Albert-Ludwigs-Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Geologie, Germany (oguzcan.karagoz@geologie.uni-freiburg.de)

Introduction

Wrinkle ridges are significant landforms on planetary bodies, and most of them occur in flood basalt units of large igneous provinces, [1]-[2]. On Mars, the circum-Tharsis wrinkle ridge system developed under compressional stresses associated with the response of the lithosphere due to the Tharsis volcanic load [1]. The morphology of ridges shows large variations and may reflect subsurface fault patterns [3]–[5]. Numerous studies on their physical dimensions [6]–[10], their accommodated horizontal strain (e.g., [11]–[12]), as well as a variety of conceptual formation models (e.g., [13]–[17]) have been performed to better understand the morphologies and geodynamic significance of wrinkle ridges. A variety of tectonic models including buckling, thrust/reverse faulting, fault-bend folding,  and fault propagation folding have been proposed to explain the formation of wrinkle ridges(e.g., [9]–[19]).

Even though there are many studies on wrinkle ridges, it is still uncertain what the subsurface of these structures looks like. To get insights into the subsurface we selected sites, where deep morphological incisions provide such exposures. Hence, we used steep escarpments formed by impact craters, collapse pits, and valleys. A prerequisite for this study is the availability of high-resolution remote sensing data and digital elevation models to investigate the fault patterns that exist in the subsurface of wrinkle ridges.  

Methodology

We used High-Resolution Imaging Science Experiment (HiRISE) (~0.25 m/px) [20], and Context Camera (CTX) (~6–7 m/px) [21] satellite imageries to generate high-resolution digital elevation models (DEMs) by using the Ames Stereo Pipeline [22] in combination with the Integrated System for Imagers and Spectrometers (ISIS) software [23]. CTX and HiRISE DEMs with the digital raster graphic (DRG) files were used to analyze and measure topographic offsets. We have selected twelve different study areas (with multiple outcrops from A to D) that all belong to the system of circum-Tharsis wrinkle ridges. Our area of interest includes regions at Solis Planum, at the borders of Nilus Dorsa, at the Coprates Chasma, at the south of Lunae Planum, and the Thaumasia Planum that shares significantly akin structures with a south of the Mela's Fossae (Fig. 1).