Experimental scattering matrices of Martian dust analogues for radiative modelling and remote sensing applications.
- 1Instituto de Astrofisica de Andalucia - CSIC, Solar System Department, Granada, Spain (jc.gomez@csic.es)
- 2Armagh Observatory and Planetarium, University College London , Armagh, BT61 9DB, United Kingdom
- 3Instituto de Cerámica y Vidrio – CSIC, 28049, Madrid, Spain
The scattering matrices of three well-characterized Martian dust simulants (JSC Mars-1, MGS-1 and MMS-2) have been measured at the Cosmic Dust Laboratory in Granada as part of the experimental work package of the ROle and impAct of Dust and clouds in the Martian AtmosPhere (ROADMAP) project. These simulants have been chosen from a range of representative dust analogues discussed in the recent literature (Allen, Jager, et al., 1998; Allen, Morris, et al., 1998; Cannon et al., 2019; Morris et al., 2001; Peters et al., 2008). The bulk chemical composition and mineralogy have been retrieved from the sample manufacturers and the relevant literature and double checked in our facilities. The samples have been size-segregated using state-of-the-art Materials Science techniques. The particle sizes have been measured for the size fractions obtained, showing narrow size-distributions unprecedented in the context of dust light scattering studies. Information about the morphology of the particles has been obtained from electron microscopy images. Reflectance spectra have been measured as well. The three Martian analogue samples with size distributions in the 6 μm < r < 30 μm range have similar scattering matrices at 488 nm and 640 nm. The simulant that deviates most from the rest is JSC Mars-1, with a shallower phase function and generally higher values of the other non-zero elements of the scattering matrix. The differences are interpreted in terms of the absorption coefficients and the morphology of the dust particles.
References
Allen, C. C., Morris, R. V., Jager, K. M., Golden, D. C., Lindstrom, D. J., Lindstrom, M. M., & Lockwood, J. P. (1998). Martian Regolith Simulant JSC Mars-1. In Lunar and Planetary Science Conference (p. 1690).
Allen, C. C., Jager, K. M., Morris, R. V., Lindstrom, D. J., Lindtsrom, M. M., & Lockwood, J. P. (1998). Martian soil simulant available for scientific, educational study. Eos, Transactions American Geophysical Union, 79(34), 405–409. https://doi.org/10.1029/98EO00309
Cannon, K. M., Britt, D. T., Smith, T. M., Fritsche, R. F., & Batcheldor, D. (2019). Mars global simulant MGS-1: A Rocknest-based open standard for basaltic martian regolith simulants. Icarus, 317, 470–478. https://doi.org/10.1016/J.ICARUS.2018.08.019
Morris, R. V., Golden, D. C., Ming, D. W., Shelfer, T. D., Jørgensen, L. C., Bell, J. F., et al. (2001). Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic Martian dust? Journal of Geophysical Research: Planets, 106(E3), 5057–5083. https://doi.org/10.1029/2000JE001328
Peters, G. H., Abbey, W., Bearman, G. H., Mungas, G. S., Smith, J. A., Anderson, R. C., et al. (2008). Mojave Mars simulant—Characterization of a new geologic Mars analog. Icarus, 197(2), 470–479. https://doi.org/10.1016/J.ICARUS.2008.05.004
How to cite: Gomez Martin, J. C., Martikainen, J., Gray, Z., Peiteado, M., Jardiel, T., and Muñoz, O.: Experimental scattering matrices of Martian dust analogues for radiative modelling and remote sensing applications., Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-66, https://doi.org/10.5194/epsc2022-66, 2022.