EPSC Abstracts
Vol. 17, EPSC2024-139, 2024, updated on 03 Jul 2024
https://doi.org/10.5194/epsc2024-139
Europlanet Science Congress 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Mercury's tidal Love number h2 from co-registration of reprocessed MLA profiles

Haifeng Xiao1, Alexander Stark2, Gregor Steinbrügge3, Arthur Briaud4, Luisa M. Lara1, and Pedro J. Gutierrez1
Haifeng Xiao et al.
  • 1Instituto de Astrofísica de Andalucía (IAA-CSIC), 18008 Granada, Spain (hxiao@iaa.es)
  • 2Institute of Planetary Research, German Aerospace Center (DLR), 12489 Berlin, Germany
  • 3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 91109 CA, USA
  • 4Institute of Geodesy and Geoinformation Science, Technische Universität Berlin, 10553 Berlin, Germany

Due to its eccentric orbit, Mercury experiences varying gravitational pull from the Sun along its orbital course, leading to periodic tidal deformation, i.e, stretching and squeezing of the planet. Prectically speaking, Mercury’s surface will rise “up and down” periodically. The magnitude of these surface height variations, typically quantified by the tidal Love number h2, depends on properties of the deep interior.  A reliable measurement of the tidal h2 can thus shed crucial insights into Mercury’s interior structure, especially the size and physical state of its core.  

The estimation of the tidal deformation requires laser or radar altimetric measurements. So far, the tidal h2 of Mercury has only been measured by Bertone et al. (2021) through minimizing height misfits at the intersection points, cross-overs, of the Mercury Laser Altimeter (MLA) profiles. However, only their lower bound is consistent with the existing modeling results (Steinbrügge et al., 2018; Goossens et al., 2022; Figure 1).

In this study, we look into Mercury's tidal deformation by applying an alternative approach to reprocessed MLA profiles, which is based on the co-registration techniques. Previously, we have successfully applied these techniques to Mars Orbiter Laser Altimeter (MOLA) profiles to obtain the spatio-temporal thickness variations of the seasonal CO2 snow/ice at Martian polar regions (Xiao et al., 2022a, b). By employing the co-registration procedures to the MLA profiles, the interpolation errors associated with the usage of cross-overs are avoided. During the reprocessing to improve the profiles’ geolocation, we correct for a pointing aberration due to relativity effects (Xiao et al., 2021) and incorporate an updated spacecraft orbit model that has better accounted for the non-gravitational forces (Andolfo et al., 2024). We carry out the study at the very polar region of 77°N to 84°N where footprints are the densest and off-nadir pointing angles are generally the smallest. For verification of the proposed approach and quantification of its uncertainty, we generate realistic synthetic profiles and conduct extensive simulations. We obtain a tidal h2 of 0.92±0.51 (3-sigma), with a central value 0.63 smaller than that of Bertone et al. (2021, 1.55±0.65), but compatible with existing models (Figure 1). Combined with the most recent gravitational deformation measurements, our measured tidal h2 favors a small to medium-sized solid inner core (<1000 km, Steinbrügge et al., 2018). Currently, we are investigating in detail other implications of our measurement on Mercury’s interior (Briaud et al., 2024, this meeting).

Further improvement can be expected from global profiles acquired by the upcoming BepiColombo Laser Altimeter (BELA), which will commence data acquisition in the beginning of 2026. As preparation, we plan to apply the verified method to synthetic BELA profiles to assess its capability in obtaining reliable temporal tidal deformation, its tidal phase lag, and in disentangling different components of the dynamic tides, e.g., the ones with 88-day and 44-day periods.

Figure 1: Comparison of our measured tidal h2 to existing estimates from observation and interior modeling. Error bars mark the 1-sigma and 3-sigma bounds, respectively. Note that modelings from  Steinbrügge et al. (2018) and Goossens et al. (2022) are largely compatible with our measurement at 1-sigma level.

 

References:

Bertone, S., Mazarico, E., Barker, M. K., Goossens, S., Sabaka, T. J., Neumann, G. A., & Smith, D. E. (2021). Deriving Mercury geodetic parameters with altimetric crossovers from the Mercury Laser Altimeter (MLA). Journal of Geophysical Research: Planets, 126(4), e2020JE006683.

Steinbrügge, G., Padovan, S., Hussmann, H., Steinke, T., Stark, A., & Oberst, J. (2018). Viscoelastic tides of Mercury and the determination of its inner core size. Journal of Geophysical Research: Planets, 123(10), 2760-2772.

Goossens, S., Renaud, J. P., Henning, W. G., Mazarico, E., Bertone, S., & Genova, A. (2022). Evaluation of recent measurements of Mercury’s moments of inertia and tides using a comprehensive Markov chain Monte Carlo method. The Planetary Science Journal, 3(2), 37.

Xiao, H., Stark, A., Steinbrügge, G., Thor, R., Schmidt, F., & Oberst, J. (2022a). Prospects for mapping temporal height variations of the seasonal CO2 snow/ice caps at the Martian poles by co-registration of MOLA Profiles. Planetary and Space Science, 214, 105446.

Xiao, H., Stark, A., Schmidt, F., Hao, J., Steinbrügge, G., Wagner, N. L., ... & Oberst, J. (2022b). Spatio‐temporal level variations of the Martian seasonal north polar cap from co‐registration of MOLA profiles. Journal of Geophysical Research: Planets, 127(10), e2021JE007158.

Xiao, H., Stark, A., Steinbrügge, G., Hussmann, H., & Oberst, J. (2021). Processing of laser altimeter Time-of-Flight measurements to geodetic coordinates. Journal of Geodesy, 95(2), 22.

Andolfo, S., Genova, A., & Del Vecchio, E. (2024). Precise orbit determination of MESSENGER spacecraft. Journal of Guidance, Control, and Dynamics, 1-13.

Briaud, A., Oberst, J., Stark, A., Hussmann, H., & Xiao, H. (2024). Mercury interior characteristics inferred from geodetic measurements. Europlanet Science Congress, 2024-374. 

How to cite: Xiao, H., Stark, A., Steinbrügge, G., Briaud, A., M. Lara, L., and J. Gutierrez, P.: Mercury's tidal Love number h2 from co-registration of reprocessed MLA profiles, Europlanet Science Congress 2024, Berlin, Germany, 8–13 Sep 2024, EPSC2024-139, https://doi.org/10.5194/epsc2024-139, 2024.