7. | KI und neue Methoden und Ansätze in der Klimaforschung

7.

KI und neue Methoden und Ansätze in der Klimaforschung
Conveners: Walter Acevedo Valencia, Maximilian Gelbrecht, Niklas Boers
Oral programme
| Wed, 13 Mar, 09:00–10:30|Hörsaal
Poster programme
| Attendance Thu, 14 Mar, 10:30–12:00|Poster Area
Wed, 09:00
Thu, 10:30
Die Anwendung von künstlicher Intelligenz in der Klimawissenschaft nimmt rasch zu. Sie hat einige Verbesserungen bei der Wettervorhersage, Daten-assimilation, der Vorhersage von Extremereignissen, der Emulation von Modellkomponenten und der Extraktion relevanter Informationen aus großen Klimadatensätzen gezeigt. KI nutzt Techniken wie tiefe neuronale Netze, um aus verschiedenen Informationsquellen wie Beobachtungen, Satellitenbildern, Reanalysen und allgemeinen Zirkulationsmodellen zu lernen und kann wichtige Klimaindikatoren wie die globale Durchschnittstemperatur oder den Anstieg des Meeresspiegels abschätzen. KI hat ein großes Potenzial für die Erstellung eines hochpräzisen digitalen Modells der Erde, das die natürlichen Prozesse und die vom Menschen verursachten Veränderungen sowie deren Wechselwirkungen erfasst, den so genannten digitalen Zwilling der Erde. Daher kann sie dazu beitragen, die Politik und die Entscheidungsfindung für Klimamaßnahmen zu unterstützen. Willkommen sind Beiträge, welche die Anwendungpotentiale von KI in der Klimaforschung aufzeigen.

Oral programme: Wed, 13 Mar | Hörsaal

Chairpersons: Maximilian Gelbrecht, Walter Acevedo Valencia, Niklas Boers
09:00–09:15
|
DKT-13-61
Christian Burmester and Teresa Scantamburlo

This work presents a comprehensive meta-analysis aimed at characterizing the intricate landscape of Artificial Intelligence (AI) applications and their impact within the domain of climate change research, both in adaptation and mitigation efforts. Notably, a significant upswing in this interdisciplinary intersection has been observed since 2020. Utilizing advanced topic clustering techniques and qualitative analysis, we have discerned 12 distinct impact and application areas: disaster and risk management, ecosystems and biodiversity, infrastructure and industry, the energy sector, agriculture, healthcare, land use and urban planning, emissions and materials, businesses and information science, wildfires, and water and marine environments. The work furnishes a data-rich panoramic view regarding the functions and roles that AI takes on in these areas. Identified tasks range from predicting and forecasting, to measuring, monitoring, classifying, modelling, and sensing, among others. The intention is to offer valuable guidance to the scholarly community and propel further research endeavors, encouraging meticulous examinations of research trends and gaps in addressing the formidable challenges posed by climate change.

How to cite: Burmester, C. and Scantamburlo, T.: Artificial Intelligence in Climate Change Research: An Overview of Impact and Application Areas, 13. Deutsche Klimatagung, Potsdam, Deutschland, 12–15 Mar 2024, DKT-13-61, https://doi.org/10.5194/dkt-13-61, 2024.

09:15–09:30
|
DKT-13-9
Claudia Hinrichs, Christopher Kadow, Johannes Meuer, and Tim Kruschke

Das Bundesamt für Seeschifffahrt und Hydrografie (BSH) analysiert wöchentlich die Meeresoberflächentemperaturen (sea surface temperature, SST) der Nord- und Ostsee im operationellen Betrieb. Seit 1995 geschieht dies in einem halb-automatisierten Prozess, in welchem täglich erfasste Satellitenmessungen und Temperaturmessungen von Schiffen und Stationen erst manuell geprüft und dann zu Wochenmitteln zusammengefasst werden. Über Lücken in der Fläche wird im aktuellen Prozess mit einem Krigingverfahren interpoliert.

Seit 2023 wird für diesen wöchentlichen Prozess, zunächst für die Nordsee, eine neue Methode entwickelt, welche auf maschinellem Lernen (ML) basiert und ein intelligentes Auffüllen der lückenhaften Beobachtungen ermöglichen soll. Konkret wird hierbei der Ansatz des „Inpaintings“ verwendet - urspünglich in der digitalen Bildbearbeitung verwurzelt. Dabei wird ein „Convolutional Neural Network“ (CNN) mit vollständingen Daten“bildern“, z.B. aus Ozean-Modellen oder Reanalysen trainiert. Das hierbei verwendete neuronale Netzwerk basiert auf einer „partial convolution“ Technik, die auch bei großen, unregelmäßig geformten Datenlücken zuverlässig funktionieren soll.

Hier präsentieren wir erste, vielversprechende Ergebnisse unseres ML-Modells, das mit täglichen SST-Daten aus BSH-eigenen Klimamodellsimulationen und des operationellen Ozeanmodells des BSH trainiert wurde. Zudem wurden aus täglichen Satellitendaten Masken erstellt, die dem ML-Modell realistische Datenlücken vorgeben. Im jetzigen setup liegt der mittlere Temperaturfehler (RMSE) zum Beispiel bei ca. 0.3°C.

Die bestehende wöchentliche SST Analyse hat eine horizontale Auflösung von 20 km, mit der neuen Methode und den hochaufgelösten Trainingsdaten streben wir zukünftig eine höhere Auflösung von ca. 5 km an. Perspektivisch soll uns der ML-Ansatz nicht nur ermöglichen, die wöchentliche SST Analyse weiter zu automatisieren, sondern es soll auch geprüft werden, ob eine neue Rekonstruktion von Nordseetemperaturen für die Zeit vor der Satelliten-Ära möglich ist.

How to cite: Hinrichs, C., Kadow, C., Meuer, J., and Kruschke, T.: Machine-Learning-basierte Analyse und Rekonstruktion von Meeresoberflächentemperaturen der Nordsee, 13. Deutsche Klimatagung, Potsdam, Deutschland, 12–15 Mar 2024, DKT-13-9, https://doi.org/10.5194/dkt-13-9, 2024.

09:30–09:45
|
DKT-13-44
Philipp Hess, Maximilian Gelbrecht, Michael Aich, Baoxiang Pan, Alistair White, Sebastian Bathiany, and Niklas Boers

Accurately projecting precipitation changes under anthropogenic global warming is crucial due to the high ecological and socio-economic impacts, especially of extreme events. Earth system model (ESM) simulations that numerically solve the governing equations on a discretized grid are our primary tool for projecting the impacts of changing precipitation characteristics in a warming climate. However, the limited resolution and complexity of current ESMs can introduce systematic errors in the numerical simulations, such as an underestimation of extremes and reduced spatial variability.
Recently, generative machine learning methods have been applied to bias-correct precipitation fields [1,2]. While demonstrating comparable or better results than established statistical approaches, these methods can suffer from training instabilities and require computationally costly retraining for each Earth system model individually. Moreover, they only allow for limited control over the spatial scale at which biases are corrected.
Here, we propose a new approach that promises to address the above issues and can correct different ESMs at a chosen spatial scale. We apply our method to bias-correct and downscale global precipitation simulations from the POEM ESM with three degrees spatial resolution. 
Different approaches to control the spatial consistency between the downscaled fields and the ESM are evaluated, such as noised initial conditions [3] and stabilization constraints [4].
     
References
    
[1] Hess, P., Drüke, M., Petri, S., Strnad, F. M., & Boers, N. (2022). Physically constrained generative adversarial networks for improving precipitation fields from Earth system models. Nature Machine Intelligence, 4(10), 828-839.
    
[2] Harris, L., McRae, A. T., Chantry, M., Dueben, P. D., & Palmer, T. N. (2022). A generative deep learning approach to stochastic downscaling of precipitation forecasts. Journal of Advances in Modeling Earth Systems, 14(10), e2022MS003120.

[3] Bischoff, T., & Deck, K. (2023). Unpaired Downscaling of Fluid Flows with Diffusion Bridges. arXiv preprint arXiv:2305.01822.

[4] White, A., Kilbertus, N., Gelbrecht, M., & Boers, N. (2023). Stabilized Neural Differential Equations for Learning Constrained Dynamics. arXiv preprint arXiv:2306.09739.

How to cite: Hess, P., Gelbrecht, M., Aich, M., Pan, B., White, A., Bathiany, S., and Boers, N.: Bias correction and downscaling of precipitation simulations from Earth system models with generative machine learning, 13. Deutsche Klimatagung, Potsdam, Deutschland, 12–15 Mar 2024, DKT-13-44, https://doi.org/10.5194/dkt-13-44, 2024.

09:45–10:00
|
DKT-13-25
Yu Huang, Zuntao Fu, and Christian Franzke

Reservoir computer (RC) is an attractive neural computing framework that can well predict the dynamics of nonlinear systems, which is promissing to address the nonlinear nature of climatic time series. While in dynamical systems theory, estimating recurrent analog (RA) trajectory in state space is as a reliable method to fit and predict the nonlinear time series. Here we would present an investigation on comparing performances of the RC and RA in predicting climatic time series. We find that the RC outperforms the RA in case of the complete observations for a dynamical system, and a combination between the RC and RA can significantly improve their ability to predict the system in case of partial observation. Additionally, we extend their comparision to the framework of inferring causality from the time series, i.e., a RC-based causality detection framework proposed by us, and the convergent cross mapping causality method based on the RA. The results demonstrate that, in terms of accuracy, computation efficiency and robustness to the noise, the causality method based on the RC outperforms that on the RA. These results could provide indications for future developments and applications of the RC in addressing climatic time series. 

How to cite: Huang, Y., Fu, Z., and Franzke, C.: A comparison between Reservoir Computing with Recurrent Analogs in predicting dynamical systems, 13. Deutsche Klimatagung, Potsdam, Deutschland, 12–15 Mar 2024, DKT-13-25, https://doi.org/10.5194/dkt-13-25, 2024.

10:00–10:15
|
DKT-13-41
Jakob Schlör, Jannik Jannik Thümmel, Antonietta Capotondi, Matthew Newman, and Bedartha Goswami

Event-to-event differences of the El Niño Southern Oscillation (ENSO) result in different patterns of extreme climate conditions globally, which requires ENSO forecasts to not only accurately predict the likelihood of an event but also its type. The high autocorrelation of tropical sea surface temperature anomalies (SSTA) allows sub-seasonal to seasonal (S2S) forecasts of ENSO. Recent studies have suggested that skillful multi-year predictions may even be possible after strong El Niño events.

The Linear Inverse Model (LIM) has been shown to produce state-of-the-art ENSO forecasts. LIM describes the dynamics of the slower-varying ocean as stochastically forced by the rapidly varying atmosphere with its deterministic dynamics assumed to be multivariate linear. Due to the linearity assumption, however, LIM is unable to capture observed asymmetries of ENSO that raise the question of whether predictable nonlinearities must be accounted for or may be treated stochastically. 

In this study, we combine deep neural networks (DNN) with the LIM to assess the role of predictable nonlinearities and non-Markovianity in the evolution of monthly tropical SSTA. The different models are tested on SSTA and sea surface height anomalies (SSHA) data from the CESM2 preindustrial control run, where we observe that modeling nonlinearities significantly enhances the forecast accuracy, particularly in the western tropical Pacific within the 9 to 18-month range. Our results further indicate that the asymmetry of warm and cold events is the main source of nonlinearity that improves the forecast skill.

How to cite: Schlör, J., Jannik Thümmel, J., Capotondi, A., Newman, M., and Goswami, B.: A Hybrid Deep Learning Model for El Niño Southern Oscillation Dynamics , 13. Deutsche Klimatagung, Potsdam, Deutschland, 12–15 Mar 2024, DKT-13-41, https://doi.org/10.5194/dkt-13-41, 2024.

10:15–10:30
|
DKT-13-47
Christof Schötz, Alistair White, and Niklas Boers

Machine learning (ML) is becoming increasingly important in climate research and Earth system modeling. Our goal is to better understand how different ML methods compare, and to enable researchers to make informed decisions when choosing machine learning tools for a given task. In this work, we explore the problem of learning the dynamics of a system from observed data without prior knowledge of the laws governing the system. Our extensive simulation study focuses on ordinary differential equation (ODE) problems that are specifically designed to reflect key aspects of various ML tasks for dynamical systems - namely, chaos, complexity, measurement uncertainty, and variability in measurement intervals. The study evaluates a variety of methods, including neural ODEs, transformer networks, Gaussian processes, echo state networks, and spline-based estimators. Our results show that the relative performance of the methods tested varies widely depending on the specific task, highlighting that no single method is universally superior. Although our research is predominantly in low-dimensional settings, in contrast to the high-dimensional nature of many climate science challenges, it provides insightful comparisons and understanding of how different approaches perform in learning the dynamics of complex systems.

How to cite: Schötz, C., White, A., and Boers, N.: Comparing Machine Learning Methods for Dynamical Systems, 13. Deutsche Klimatagung, Potsdam, Deutschland, 12–15 Mar 2024, DKT-13-47, https://doi.org/10.5194/dkt-13-47, 2024.

Poster programme: Thu, 14 Mar, 10:30–12:00 | Poster Area

Chairpersons: Walter Acevedo Valencia, Maximilian Gelbrecht, Niklas Boers
P18
|
DKT-13-13
Thomas Y. Chen and Hyunwoo Park

The integration of Artificial Intelligence (AI) in climate research has emerged as a pivotal development in understanding and addressing the multifaceted challenges of climate change. This survey talk explores the diverse applications of AI in this field, highlighting how these technologies are reshaping our approach to environmental stewardship and sustainable development. At the forefront of this integration is the use of machine learning algorithms in climate modeling and forecasting. AI's ability to process vast datasets has significantly enhanced the accuracy of climate models, enabling more precise predictions of weather patterns, temperature fluctuations, and atmospheric changes. This improvement is crucial in formulating effective climate policies and disaster response strategies.

Another notable application is in the domain of environmental monitoring. AI-driven tools are increasingly employed to analyze satellite imagery and sensor data, offering unprecedented insights into deforestation, ocean health, and biodiversity loss. Such comprehensive environmental surveillance aids in the timely detection of ecological anomalies, facilitating prompt intervention. AI also plays a critical role in energy efficiency. Through smart grid technologies and predictive maintenance of renewable energy systems, AI optimizes energy use and promotes the adoption of sustainable energy sources. This is vital in reducing greenhouse gas emissions and advancing towards a low-carbon economy.

Furthermore, the talk discusses the use of AI in climate risk assessment and management. By analyzing patterns in climate data, AI assists in identifying regions vulnerable to extreme weather events, guiding resource allocation and infrastructure planning to mitigate potential impacts. In conclusion, the survey study underscores AI's transformative potential in climate science. While acknowledging the challenges in AI deployment, such as data quality and ethical considerations, the paper advocates for a collaborative approach, integrating AI innovations with traditional climate research methodologies to achieve holistic and effective solutions to climate change.

How to cite: Chen, T. Y. and Park, H.: Artificial Intelligence in Climate Research: Innovations and Implications, 13. Deutsche Klimatagung, Potsdam, Deutschland, 12–15 Mar 2024, DKT-13-13, https://doi.org/10.5194/dkt-13-13, 2024.

P19
|
DKT-13-48
Jannik Thümmel, Felix Strnad, Jakob Schlör, and Bedartha Goswami

Sub-seasonal to seasonal (S2S) weather forecasts play a crucial role in guiding decision-making processes related to agricultural planning, energy management, and disaster mitigation. Operated on time scales spanning weeks to months, these forecasts distinguish themselves from short-term predictions in two key aspects: (i) the atmospheric dynamics on these timescales are accurately described only through statistical means, and (ii) these dynamics exhibit large-scale phenomena in both spatial and temporal dimensions. Despite the success of deep learning (DL) in short-term weather forecasting, DL-based S2S predictions face challenges arising from limited training data and significant predictability fluctuations due to varying atmospheric conditions. To enhance the reliability of S2S forecasts by incorporating the latest DL advancements, our proposal involves the application of the masked auto-encoder (MAE) framework. This framework aims to learn comprehensive representations of large-scale atmospheric phenomena from high-resolution global data. Beyond assessing the suitability of these learned representations for S2S forecasting, our investigation extends to their potential to account for climatic phenomena, such as the Madden-Julian Oscillation, recognized for enhancing predictability on S2S timescales.

How to cite: Thümmel, J., Strnad, F., Schlör, J., and Goswami, B.: Subseasonal-to-seasonal forecasts through self-supervised learning, 13. Deutsche Klimatagung, Potsdam, Deutschland, 12–15 Mar 2024, DKT-13-48, https://doi.org/10.5194/dkt-13-48, 2024.

P20
|
DKT-13-60
Christian Burmester, Philipp Hess, and Niklas Boers

This study presents advancements in leveraging state-of-the-art computer vision and machine learning techniques to fill historical gaps in temperature field records. Reconstructing historical data is crucial to obtain a complete and precise understanding of past climate scenarios and temperature patterns. Simultaneously, it facilitates more accurate comparisons with present-day climatic conditions, thereby aiding in contextualising the significance of recent years’ record-breaking temperature records. Building upon prior work, our approach aims to enhance the understanding of climate dynamics by training a diffusion-based generative machine learning model that learns the underlying temperature distributions from climate model data. We train a diffusion model on complete (near-surface air) temperature records and condition the generative model on masked fields to reconstruct the missing values (historical gaps). We compare the performance of our methods against statistical and machine learning baselines. We further discuss extensions of our methods to account for temporal correlations and seasonal variability, and aim to include several interpretation methods to validate our results in a more physics-grounded approach.

How to cite: Burmester, C., Hess, P., and Boers, N.: Reconstructing Historical Temperature Fields using Diffusion-based Generative Machine Learning, 13. Deutsche Klimatagung, Potsdam, Deutschland, 12–15 Mar 2024, DKT-13-60, https://doi.org/10.5194/dkt-13-60, 2024.

P21
|
DKT-13-74
Michael Aich, Baoxiang Pan, Philipp Hess, Sebastian Bathiany, Yu Huang, and Niklas Boers

Earth system models (ESMs) are crucial for understanding and predicting the behaviour of the Earth’s climate system. Understanding and accurately simulating precipitation is particularly important for assessing the impacts of climate change, predicting extreme weather events, and developing sus- tainable strategies to manage water resources and mitigate associated risks. However, earth system models are prone to large precipitation biases because the relevant processes occur on a large range of scales and involve substantial uncertainties.
In this work, we aim to correct such model biases by training generative machine learning models that map between model data and observational data. We address the challenge that the datasets are not paired, meaning that there is no sample-related ground truth to compare the model output to, due to the chaotic nature of geophysical flows. This challenge renders many machine learning approach unsuitable, and also implies a lack of performance metrics.

Our main contribution is the construction of a proxy variable that over- comes this problem and allows for supervised training and evaluation of a bias correction model. We show that a generative model is then able to 

correct spatial patterns and remove statistical biases in the South American domain. The approach successfully preserves large scale structures in the climate model fields while correcting small scale biases in the model data’s spatio-temporal structure and frequency distribution.

How to cite: Aich, M., Pan, B., Hess, P., Bathiany, S., Huang, Y., and Boers, N.: Down-scaling and bias correction of precipitation with generative machine learning models, 13. Deutsche Klimatagung, Potsdam, Deutschland, 12–15 Mar 2024, DKT-13-74, https://doi.org/10.5194/dkt-13-74, 2024.